Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mol Plant ; 17(7): 1129-1150, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38835170

ABSTRACT

Mescaline, among the earliest identified natural hallucinogens, holds great potential in psychotherapy treatment. Nonetheless, despite the existence of a postulated biosynthetic pathway for more than half a century, the specific enzymes involved in this process are yet to be identified. In this study, we investigated the cactus Lophophora williamsii (Peyote), the largest known natural producer of the phenethylamine mescaline. We employed a multi-faceted approach, combining de novo whole-genome and transcriptome sequencing with comprehensive chemical profiling, enzymatic assays, molecular modeling, and pathway engineering for pathway elucidation. We identified four groups of enzymes responsible for the six catalytic steps in the mescaline biosynthetic pathway, and an N-methyltransferase enzyme that N-methylates all phenethylamine intermediates, likely modulating mescaline levels in Peyote. Finally, we reconstructed the mescaline biosynthetic pathway in both Nicotiana benthamiana plants and yeast cells, providing novel insights into several challenges hindering complete heterologous mescaline production. Taken together, our study opens up avenues for exploration of sustainable production approaches and responsible utilization of mescaline, safeguarding this valuable natural resource for future generations.


Subject(s)
Biosynthetic Pathways , Hallucinogens , Mescaline , Hallucinogens/metabolism , Mescaline/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
3.
Nat Commun ; 14(1): 4540, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500644

ABSTRACT

Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.


Subject(s)
Solanum lycopersicum , Fruit/metabolism , Acyltransferases/metabolism , Biosynthetic Pathways , Plant Breeding
4.
Nat Plants ; 9(5): 817-831, 2023 05.
Article in English | MEDLINE | ID: mdl-37127748

ABSTRACT

Modulation of the endocannabinoid system is projected to have therapeutic potential in almost all human diseases. Accordingly, the high demand for novel cannabinoids stimulates the discovery of untapped sources and efficient manufacturing technologies. Here we explored Helichrysum umbraculigerum, an Asteraceae species unrelated to Cannabis sativa that produces Cannabis-type cannabinoids (for example, 4.3% cannabigerolic acid). In contrast to Cannabis, cannabinoids in H. umbraculigerum accumulate in leaves' glandular trichomes rather than in flowers. The integration of de novo whole-genome sequencing data with unambiguous chemical structure annotation, enzymatic assays and pathway reconstitution in Nicotiana benthamiana and in Saccharomyces cerevisiae has uncovered the molecular and chemical features of this plant. Apart from core biosynthetic enzymes, we reveal tailoring ones producing previously unknown cannabinoid metabolites. Orthology analyses demonstrate that cannabinoid synthesis evolved in parallel in H. umbraculigerum and Cannabis. Our discovery provides a currently unexploited source of cannabinoids and tools for engineering in heterologous hosts.


Subject(s)
Cannabinoids , Cannabis , Humans , Cannabinoids/metabolism , Cannabis/genetics , Flowers/metabolism , Plant Leaves/metabolism
5.
New Phytol ; 234(4): 1394-1410, 2022 05.
Article in English | MEDLINE | ID: mdl-35238413

ABSTRACT

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Subject(s)
Alkaloids , Dioxygenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alkaloids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Ketoglutaric Acids/metabolism , Solanum lycopersicum/genetics , Solanum/genetics , Solanum/metabolism , Solanum tuberosum/genetics
6.
New Phytol ; 233(3): 1220-1237, 2022 02.
Article in English | MEDLINE | ID: mdl-34758118

ABSTRACT

Steroidal glycoalkaloids (SGAs) are protective metabolites constitutively produced by Solanaceae species. Genes and enzymes generating the vast structural diversity of SGAs have been largely identified. Yet, mechanisms of hormone pathways coordinating defence (jasmonate; JA) and growth (gibberellin; GA) controlling SGAs metabolism remain unclear. We used tomato to decipher the hormonal regulation of SGAs metabolism during growth vs defence tradeoff. This was performed by genetic and biochemical characterisation of different JA and GA pathways components, coupled with in vitro experiments to elucidate the crosstalk between these hormone pathways mediating SGAs metabolism. We discovered that reduced active JA results in decreased SGA production, while low levels of GA or its receptor led to elevated SGA accumulation. We showed that MYC1 and MYC2 transcription factors mediate the JA/GA crosstalk by transcriptional activation of SGA biosynthesis and GA catabolism genes. Furthermore, MYC1 and MYC2 transcriptionally regulate the GA signalling suppressor DELLA that by itself interferes in JA-mediated SGA control by modulating MYC activity through protein-protein interaction. Chemical and fungal pathogen treatments reinforced the concept of JA/GA crosstalk during SGA metabolism. These findings revealed the mechanism of JA/GA interplay in SGA biosynthesis to balance the cost of chemical defence with growth.


Subject(s)
Alkaloids , Solanum lycopersicum , Alkaloids/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Gibberellins/metabolism , Solanum lycopersicum/metabolism , Oxylipins/metabolism
7.
PeerJ ; 9: e10577, 2021.
Article in English | MEDLINE | ID: mdl-33575122

ABSTRACT

BACKGROUND: The benefits of trees in urban areas include the following: an increase in ecosystem health, an increase in human health, the mitigation of the effects of heat and drought at microclimate level, the storage and sequestration of carbon, and a reduction in air pollution and noise. These ecosystem services can be provided only by trees that are in good health. The main cause of salt stress in urban environments is the use of de-icing salts on the streets in winter. Salt stress is a complex process that includes changes in plants on the physiological, histological, cellular and molecular levels, leading to limitations in nutrient uptake, disrupting the ionic balance of trees and resulting in the death of roadside trees. In response to salinity, trees have developed a variety of defence mechanisms that allow them to minimize the effects of stress and maintain homeostasis. METHODOLOGY: The reactions of two species Acer species: A. platanoides and A. campestre, which have different sensitivities to the unfavourable conditions of the urban environments (mainly salt stress), were investigated. The research included two experiments: a field experiment with city trees and a controlled pot experiment with young trees treated with increasing doses of salt. In both experiments, the following were performed: an assessment of the health condition of the trees and the content of macroelements as well as the Cl and Na in leaves and a qualitative and quantitative analysis of polyprenols. RESULTS: A. campestre had a more specific strategy than A. platanoides for dealing with Na and Cl, which resulted in undamaged leaves. Under the same conditions, A. platanoides leaves contained more Cl and Na and were severely damaged. The disruption of the ion balance due to salt stress was lower in A. campestre than in A. platanoides. Compared with A. platanoides, A. campestre synthesized more polyprenols in the field experiment. This ability was acquired during the process of acclimation, because it occurred only in the mature trees in the field experiment and not in the young trees in the pot experiment. CONCLUSIONS: The use of two experimental methods (i.e., the field and pot experiments) allowed for a more complete assessment of tree strategies to mitigate salt stress. A. campestre displayed a more specific strategy than A. platanoides. This strategy was based on several elements. A. campestre limited Cl and Na transport to the leaves, which resulted in a lack of damage to those organs. Under the same conditions, A. platanoides individuals contained more Cl and Na in their leaves and were seriously damaged. A. campestre synthesized larger amounts of polyprenols, which probably have the ability to mitigate salt stress. This ability was acquired during the process of acclimation, because it occurred only in the mature trees in the field experiment and was not observed in the young trees in the pot experiment.

8.
Mol Plant ; 14(3): 440-455, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33387676

ABSTRACT

N-hydroxy-pipecolic acid (NHP) activates plant systemic acquired resistance (SAR). Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction. Despite of extensive studies on SAR induction, the effects of NHP metabolism on plant growth remain largely unclear. In this study, we discovered that NHP glycosylation is a critical factor that fine-tunes the tradeoff between SAR defense and plant growth. We demonstrated that a UDP-glycosyltransferase (UGT76B1) forming NHP glycoside (NHPG) controls the NHP to NHPG ratio. Consistently, the ugt76b1 mutant exhibits enhanced SAR response and an inhibitory effect on plant growth, while UGT76B1 overexpression attenuates SAR response, promotes growth, and delays senescence, indicating that NHP levels are dependent on UGT76B1 function in the course of SAR. Furthermore, our results suggested that, upon pathogen attack, UGT76B1-mediated NHP glycosylation forms a "hand brake" on NHP accumulation by attenuating the positive regulation of NHP biosynthetic pathway genes, highlighting the complexity of SAR-associated networks. In addition, we showed that UGT76B1-mediated NHP glycosylation in the local site is important for fine-tuning SAR response. Our results implicate that engineering plant immunity through manipulating the NHP/NHPG ratio is a promising method to balance growth and defense response in crops.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glycosyltransferases/metabolism , Pipecolic Acids/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Glycosylation , Glycosyltransferases/genetics
9.
Curr Opin Plant Biol ; 55: 118-128, 2020 06.
Article in English | MEDLINE | ID: mdl-32446857

ABSTRACT

Steroidal glycoalkaloids (SGAs) are defense specialized metabolites produced by thousands of Solanum species. These metabolites are remarkable in structural diversity formed following modifications in their core scaffold. In recent years, it became clear that a large portion of this chemical repertoire was acquired through various molecular mechanisms involving 'hijacking' of core metabolism enzymes. This was typically accompanied by gene duplication and divergence and further neofunctionalization as well as modified subcellular localization and evolution of new substrate preferences. In this review, we highlight recent findings in the SGAs biosynthetic pathway and elaborate on similar occurrences in other chemical classes that enabled evolution of specialized metabolic pathways and its underlying structural diversity.


Subject(s)
Solanum lycopersicum , Gene Duplication , Metabolic Networks and Pathways
10.
Nat Chem Biol ; 16(7): 740-748, 2020 07.
Article in English | MEDLINE | ID: mdl-32424305

ABSTRACT

Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.


Subject(s)
Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Glycosyltransferases/genetics , Plant Proteins/genetics , Saponins/biosynthesis , Spinacia oleracea/metabolism , Terpenes/metabolism , Beta vulgaris/genetics , Beta vulgaris/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Cellulose/metabolism , Endoplasmic Reticulum/metabolism , Gas Chromatography-Mass Spectrometry , Glucosyltransferases/metabolism , Glucuronic Acid/metabolism , Glycosylation , Glycosyltransferases/metabolism , Glycyrrhiza/genetics , Glycyrrhiza/metabolism , Plant Cells/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Spinacia oleracea/genetics
11.
Proc Natl Acad Sci U S A ; 117(7): 3874-3883, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015118

ABSTRACT

Microbial communities associated with roots confer specific functions to their hosts, thereby modulating plant growth, health, and productivity. Yet, seminal questions remain largely unaddressed including whether and how the rhizosphere microbiome modulates root metabolism and exudation and, consequently, how plants fine tune this complex belowground web of interactions. Here we show that, through a process termed systemically induced root exudation of metabolites (SIREM), different microbial communities induce specific systemic changes in tomato root exudation. For instance, systemic exudation of acylsugars secondary metabolites is triggered by local colonization of bacteria affiliated with the genus Bacillus Moreover, both leaf and systemic root metabolomes and transcriptomes change according to the rhizosphere microbial community structure. Analysis of the systemic root metabolome points to glycosylated azelaic acid as a potential microbiome-induced signaling molecule that is subsequently exuded as free azelaic acid. Our results demonstrate that rhizosphere microbiome assembly drives the SIREM process at the molecular and chemical levels. It highlights a thus-far unexplored long-distance signaling phenomenon that may regulate soil conditioning.


Subject(s)
Bacteria/metabolism , Microbiota , Plant Exudates/metabolism , Plant Roots/metabolism , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Plant Roots/microbiology , Plants/metabolism , Plants/microbiology , Rhizosphere , Soil/chemistry
12.
Nat Commun ; 10(1): 5169, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727889

ABSTRACT

The genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e. leptinines) serve as precursors for leptines that act as defenses against Colorado Potato Beetle (Leptinotarsa decemlineata Say), an important pest of potato worldwide. However, SGA hydroxylating enzymes remain unknown. Here, we discover that 2-OXOGLUTARATE-DEPENDENT-DIOXYGENASE (2-ODD) enzymes catalyze SGA-hydroxylation across various Solanum species. In contrast to cultivated potato, Solanum chacoense, a widespread wild potato species, has evolved a 2-ODD enzyme leading to the formation of leptinines. Furthermore, we find a related 2-ODD in tomato that catalyzes the hydroxylation of the bitter α-tomatine to hydroxytomatine, the first committed step in the chemical shift towards downstream ripening-associated non-bitter SGAs (e.g. esculeoside A). This 2-ODD enzyme prevents bitterness in ripe tomato fruit consumed today which otherwise would remain unpleasant in taste and more toxic.


Subject(s)
Dioxygenases/metabolism , Fruit/metabolism , Ketoglutaric Acids/metabolism , Metabolome , Solanum/metabolism , Taste , Alkaloids/chemistry , Alkaloids/metabolism , Biocatalysis , Genes, Plant , Hydroxylation , Ketoglutaric Acids/chemistry , Quantitative Trait Loci/genetics , Solanum/genetics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Steroids/chemistry , Steroids/metabolism
13.
Int J Mol Sci ; 20(12)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234450

ABSTRACT

 Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.


Subject(s)
Dolichols/metabolism , Fungal Proteins/metabolism , Fungi/metabolism , Glycosyltransferases/metabolism , Aspergillus niger/chemistry , Aspergillus niger/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Dolichols/analysis , Fungi/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Models, Molecular , Neurospora crassa/chemistry , Neurospora crassa/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Spectrometry, Mass, Electrospray Ionization , Trichoderma/chemistry , Trichoderma/metabolism
14.
Plant Physiol ; 174(2): 857-874, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28385729

ABSTRACT

The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis (Arabidopsis thaliana). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes.


Subject(s)
Arabidopsis/metabolism , Dolichols/chemistry , Models, Theoretical , Spectrometry, Mass, Electrospray Ionization/methods , Terpenes/metabolism , Carbon Isotopes , Chromatography, Gas/methods , Dolichols/metabolism , Erythritol/analogs & derivatives , Erythritol/metabolism , Isotope Labeling/methods , Metabolic Networks and Pathways , Mevalonic Acid/analogs & derivatives , Mevalonic Acid/chemistry , Mevalonic Acid/metabolism , Osmotic Pressure , Phytosterols/biosynthesis , Sorbitol/metabolism , Sugar Phosphates/metabolism , Xylulose/analogs & derivatives , Xylulose/chemistry
15.
PLoS One ; 12(2): e0172682, 2017.
Article in English | MEDLINE | ID: mdl-28234963

ABSTRACT

The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids.


Subject(s)
Adaptation, Physiological , Cell Wall/drug effects , Lipids/biosynthesis , Sodium Chloride/pharmacology , Stress, Physiological , Terpenes/metabolism , Tilia/drug effects , Alcohols/isolation & purification , Alcohols/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Lipids/isolation & purification , Mucoproteins/biosynthesis , Mucoproteins/isolation & purification , Pectins/biosynthesis , Pectins/isolation & purification , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Proteins/isolation & purification , Salinity , Soil/chemistry , Terpenes/isolation & purification , Tilia/metabolism , Trees/drug effects , Trees/metabolism
16.
Plant Cell ; 27(12): 3336-53, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26628744

ABSTRACT

Dolichol is a required cofactor for protein glycosylation, the most common posttranslational modification modulating the stability and biological activity of proteins in all eukaryotic cells. We have identified and characterized two genes, PPRD1 and -2, which are orthologous to human SRD5A3 (steroid 5α reductase type 3) and encode polyprenol reductases responsible for conversion of polyprenol to dolichol in Arabidopsis thaliana. PPRD1 and -2 play dedicated roles in plant metabolism. PPRD2 is essential for plant viability; its deficiency results in aberrant development of the male gametophyte and sporophyte. Impaired protein glycosylation seems to be the major factor underlying these defects although disturbances in other cellular dolichol-dependent processes could also contribute. Shortage of dolichol in PPRD2-deficient cells is partially rescued by PPRD1 overexpression or by supplementation with dolichol. The latter has been discussed as a method to compensate for deficiency in protein glycosylation. Supplementation of the human diet with dolichol-enriched plant tissues could allow new therapeutic interventions in glycosylation disorders. This identification of PPRD1 and -2 elucidates the factors mediating the key step of the dolichol cycle in plant cells which makes manipulation of dolichol content in plant tissues feasible.


Subject(s)
Arabidopsis/enzymology , Dolichols/metabolism , Oxidoreductases/metabolism , Protein Processing, Post-Translational , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glycosylation , Mutation , Oxidoreductases/genetics , Plant Infertility
17.
Neuropsychopharmacology ; 39(4): 841-54, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24108067

ABSTRACT

The aim of the present work was to shed light on the role played by the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and memory consolidation in rodents through the inhibition of the key and rate-limiting enzyme 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR) both in vivo and in vitro with simvastatin. Three-month-old male Wistar rats treated for 21 days with simvastatin or vehicle were tested in the social interaction, elevated plus-maze, and inhibitory avoidance tasks; after behavioral testing, the amygdala, hippocampus, prefrontal cortex, dorsal, and ventral striatum were dissected out for biochemical assays. In order to delve deeper into the molecular mechanisms underlying the observed effects, primary rat hippocampal neurons were used. Our results show that HMGR inhibition by simvastatin induces anxiogenic-like effects in the social interaction but not in the elevated plus-maze test, and improves memory consolidation in the inhibitory avoidance task. These effects are accompanied by imbalances in the activity of specific prenylated proteins, Rab3 and RhoA, involved in neurotransmitter release, and synaptic plasticity, respectively. Taken together, the present findings indicate that the isoprenoid/cholesterol biosynthetic pathway is critically involved in the physiological modulation of both emotional and cognitive processes in rodents.


Subject(s)
Anticholesteremic Agents/pharmacology , Cholesterol/metabolism , Cognition/drug effects , Emotions/drug effects , Simvastatin/pharmacology , Terpenes/metabolism , Animals , Avoidance Learning/drug effects , Brain/cytology , Brain/drug effects , Brain/metabolism , Brain/ultrastructure , CREB-Binding Protein/metabolism , Cells, Cultured , Disks Large Homolog 4 Protein , Intracellular Signaling Peptides and Proteins/metabolism , Male , Maze Learning/drug effects , Membrane Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Wistar , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism , Triglycerides/blood
18.
J Lipid Res ; 54(7): 2023-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23673976

ABSTRACT

In this study, a method of supercritical fluid extraction (SFE) with carbon dioxide of polyisoprenoids from plant photosynthetic tissues is described. SFE was an effective extraction method for short- and medium-chain compounds with even higher yield than that observed for the "classical extraction" method with organic solvents. Moreover, SFE-derived extracts contained lower amounts of impurities (e.g., chlorophylls) than those obtained by extraction of the same tissue with organic solvents. Elevated temperature and extended extraction time of SFE resulted in a higher rate of extraction of long-chain polyisoprenoids. Ethanol cofeeding did not increase the extraction efficiency of polyisoprenoids; instead, it increased the content of impurities in the lipid extract. Optimization of SFE time and temperature gives the opportunity of prefractionation of complex polyisoprenoid mixtures accumulated in plant tissues. Extracts obtained with application of SFE are very stable and free from organic solvents and can further be used directly in experimental diet supplementation or as starting material for preparation of semisynthetic polyisoprenoid derivatives, e.g., polyisoprenoid phosphates.


Subject(s)
Alcohols/isolation & purification , Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid , Esters/isolation & purification , Plant Leaves/chemistry , Polymers/isolation & purification , Alcohols/chemistry , Esters/chemistry , Picea/chemistry , Polymers/chemistry , Sorbus/chemistry , Temperature , Time Factors , Nicotiana/chemistry
19.
Biochim Biophys Acta ; 1831(2): 438-47, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23178167

ABSTRACT

Sugars are recognized as signaling molecules regulating the biosynthesis of secondary metabolites in plants. Here, a modulatory effect of sugars on dolichol and phytosterol profiles was noted in the hairy roots of Arabidopsis thaliana. Arabidopsis roots contain a complex dolichol mixture comprising three groups ('families') of dolichols differing in the chain-length. These dolichols, especially the longest ones are accompanied by considerable amounts of polyprenols of the same length. The spectrum of polyisoprenoid alcohols, i.e. dolichols and polyprenols, was dependent on sugar type (glucose or sucrose) and its concentration in the medium. Among the long-chain dolichols Dol/Pren-20 (dolichol or prenol molecule composed of 20 isoprene residues) and Dol/Pren-23 were the main components at 0.5% and 2% glucose, respectively. Moreover, the ratio of polyprenols versus respective dolichols was also modulated by sugar in this group of polyisoprenoids, with polyprenols dominating at 3% sucrose and dolichols at 2% glucose. Glucose concentration affected the expression level of genes encoding cis-prenyltransferases, enzymes responsible for elongation of the polyisoprenoid chain. The most abundant phytosterols of the A. thaliana roots, ß-sitosterol, stigmasterol and campesterol, were accompanied by corresponding stanols and traces of brassicasterol, stigmast-4,22-dien-3-one and stigmast-4-en-3-one. Similar to the polyisoprenoids, sterol profile responded to the sugar present in the medium, ß-sitosterol dominating in roots grown on 3% or lower glucose concentrations and stigmasterol in 3% sucrose. These results indicate an involvement of sugar signaling in the regulation of cis-prenyltransferases and phytosterol pathway enzymes.


Subject(s)
Arabidopsis/metabolism , Carbohydrate Metabolism , Phytosterols/metabolism , Terpenes/metabolism , Biological Availability , Plant Roots/cytology , Plant Roots/metabolism
20.
FASEB J ; 25(11): 4037-47, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21798954

ABSTRACT

The rate-limiting step of cholesterol biosynthetic pathway is catalyzed by 3-hydroxy-3-methylglutaryl coenzyme reductase (HGMR), whose inhibitors, the statins, widely used in clinical practice to treat hypercholesterolemia, often cause myopathy, and rarely rhabdomyolysis. All studies to date are limited to the definition of statin-induced myotoxicity omitting to investigate whether and how HMGR inhibition influences muscle functions. To this end, 3-mo-old male rats (Rattus norvegicus) were treated for 3 wk with a daily intraperitoneal injection of simvastatin (1.5 mg/kg/d), and biochemical, morphological, mechanical, and functional analysis were performed on extensor digitorum longus (EDL) muscle. Our results show that EDL muscles from simvastatin-treated rats exhibited reduced HMGR activity; a 15% shift from the fastest myosin heavy-chain (MHC) isoform IIb to the slower IIa/x; and reduced power output and unloaded shortening velocity, by 41 and 23%, respectively, without any change in isometric force and endurance. Moreover, simvastatin-treated rats showed a decrease of maximum speed reached and the latency to fall off the rotaroad (∼-30%). These results indicate that the molecular mechanism of the impaired muscle function following statin treatment could be related to the plasticity of fast MHC isoform expression.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Muscle, Skeletal/drug effects , Myosin Heavy Chains/metabolism , Simvastatin/pharmacology , Animals , Male , Motor Activity/drug effects , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Protein Isoforms/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...