Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 11(6): 2236-2241, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911845

ABSTRACT

In this work, we present a photonic integrated platform based on buried InGaAs waveguides with InP cladding that operates over a large mid-infrared (mid-IR) spectral range. Thanks to wet-etch fabrication patterning and Fe doping, low propagation losses below 1.2 dB/cm (0.3 cm-1 loss coefficient) have been obtained between 4.6 and 11.2 µm wavelengths (890-1960 cm-1 wavenumber), in both transverse electric (TE) and transverse magnetic (TM) polarization modes. The possibility of monolithically integrating such waveguides with mid-IR sources offers promising perspectives for developing broadband, homogeneously integrated systems.

2.
Nat Commun ; 13(1): 2528, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534466

ABSTRACT

Free-space coupling to subwavelength individual optical elements is a central theme in quantum optics, as it allows the control over individual quantum systems. Here we show that, by combining an asymmetric immersion lens setup and a complementary resonating metasurface we are able to perform terahertz time-domain spectroscopy of an individual, strongly subwavelength meta-atom. We unravel the linewidth dependence as a function of the meta-atom number indicating quenching of the superradiant coupling. On these grounds, we investigate ultrastrongly coupled Landau polaritons at the single resonator level, measuring a normalized coupling ratio [Formula: see text]. Similar measurements on a lower density two dimensional electron gas yield a coupling ratio [Formula: see text] with a cooperativity C = 94. Our findings pave the way towards the control of ultrastrong light-matter interaction at the single electron/ resonator level. The proposed technique is way more general and can be useful to characterize the complex conductivity of micron-sized samples in the terahertz domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...