Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 234: 113406, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35286962

ABSTRACT

Several contaminants exceed their environmental thresholds in Swedish marine surface waters. We ranked the toxicity-drivers among contaminants detected near heavy industry, based on toxicity to zooplankton, and identified di-butyl phthalate and sodium dodecyl sulphate as contaminants of concern. We tested their acute individual and mixture toxicity by assessing effects on mortality, biodiversity, algal growth, and copepod reproduction in natural mesozooplankton communities. The mixture effects were compared to Independent Action mixture model predictions. Egg production and algae growth were affected at 4 µmol/l DBP, and effects on mortality, algae growth and biodiversity were observed at 12 µmol/l SDS. The mixture (1 µmol/l DBP, 3 µmol/l SDS) affected all endpoints, and the observed effects were underestimated by 21% on average compared to predictions. We found that the successional trajectory in zooplankton communities was compound dependant, and that DBP and SDS are toxic to marine zooplankton, but at levels above measured environmental concentrations.

2.
Ecotoxicol Environ Saf ; 207: 111523, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120279

ABSTRACT

The textile industry, while of major importance in the world economy, is a toxic industry utilizing and emitting thousands of chemical substances into the aquatic environment. The aim of this project was to study the potentially harmful effects associated with the leaching of chemical residues from three different types of textiles: sportswear, children's bath towels, and denim using different fish models (cell lines, fish larvae and juvenile fish). A combination of in vitro and in vivo test systems was used. Numerous biomarkers, ranging from gene expression, cytotoxicity and biochemical analysis to behavior, were measured to detect effects of leached chemicals. Principle findings indicate that leachates from all three types of textiles induced cytotoxicity on fish cell lines (RTgill-W1). Leachates from sportswear and towels induced mortality in zebrafish embryos, and chemical residues from sportswear reduced locomotion responses in developing larval fish. Sportswear leachate increased Cyp1a mRNA expression and EROD activity in liver of exposed brown trout. Leachates from towels induced EROD activity and VTG in rainbow trout, and these effects were mitigated by the temperature of the extraction process. All indicators of toxicity tested showed that exposure to textile leachate can cause adverse reactions in fish. These findings suggested that chemical leaching from textiles from domestic households could pose an ecotoxicological threat to the health of the aquatic environment.


Subject(s)
Oncorhynchus mykiss/physiology , Textile Industry , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Ecotoxicology , Gene Expression , Liver/drug effects , Textiles
3.
Aquat Toxicol ; 227: 105592, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32891020

ABSTRACT

International shipping is responsible for the release of numerous contaminants to the air and the marine environment. In order to reduce airborne emissions, a global 0.5 % sulphur limit for marine fuels was implemented in January 2020. Recently, a new generation of so-called hybrid fuels that meet these new requirements have appeared on the market. Studies have shown that these fuels have physical properties that make conventional clean-up methods difficult, but few have studied their effects on marine life. We conducted short and long-term microcosm experiments with natural mesozooplankton communities exposed to the water accommodated fractions (WAFs) of the hybrid fuel RMD80 (0.1 % sulphur) and a Marine Gas Oil (MGO). We compared the toxicity of both fuel types in 48h short-term exposures, and studied the effects of the hybrid fuel on community structure over two generations in a 28-day experiment. The F0 generation was exposed for eight days and the F1 generation was raised for 22 days without exposure. GC-MS and GC-FID analysis of the WAFs revealed that the hybrid fuel was dominated by a mixture of volatile organic compounds (VOCs) and poly aromatic hydrocarbons (PAHs), whereas the MGO was mainly composed of VOCs. We observed significant short-term effects on copepod egg production from exposure to 25 % hybrid fuel WAF, but no effects from the MGO WAF at equivalent WAF dilution. In the long-term experiment with RMD80, the feeding rate was initially increased after exposure to 0.5-1.1 % hybrid fuel WAF, but this did not increase the copepod egg production. Significant change in community structure was observed after eight days in the F0 community at 0.5-3.3 % WAF. Indications of further alterations in species abundances was observed in the F1 community. Our results demonstrate that the MGO is a less toxic low-sulphur alternative to the hybrid fuel for marine zooplankton, and that a hybrid fuel spill could result in altered diversity of future generations of copepod communities.


Subject(s)
Copepoda/drug effects , Fuel Oils/toxicity , Hydrocarbons, Aromatic/toxicity , Sulfur/toxicity , Water Pollutants, Chemical/toxicity , Zooplankton/drug effects , Animals , Copepoda/physiology , Dose-Response Relationship, Drug , Fuel Oils/analysis , Hydrocarbons, Aromatic/chemistry , Models, Theoretical , Reproduction/drug effects , Ships , Sulfur/chemistry , Time Factors , Water Pollutants, Chemical/chemistry , Zooplankton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...