Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1387, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35297401

ABSTRACT

Tailored nanoscale quantum light sources, matching the specific needs of use cases, are crucial building blocks for photonic quantum technologies. Several different approaches to realize solid-state quantum emitters with high performance have been pursued and different concepts for energy tuning have been established. However, the properties of the emitted photons are always defined by the individual quantum emitter and can therefore not be controlled with full flexibility. Here we introduce an all-optical nonlinear method to tailor and control the single photon emission. We demonstrate a laser-controlled down-conversion process from an excited state of a semiconductor quantum three-level system. Based on this concept, we realize energy tuning and polarization control of the single photon emission with a control-laser field. Our results mark an important step towards tailored single photon emission from a photonic quantum system based on quantum optical principles.

2.
Phys Rev Lett ; 123(16): 160501, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31702339

ABSTRACT

Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of nonclassical light were used for seminal demonstration of entanglement swapping, but applications in quantum technologies demand push-button operation requiring single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent prerequisites on the efficiency and purity of the generation of entangled states. Here we show a proof-of-concept demonstration of all-photonic entanglement swapping with pairs of polarization-entangled photons generated on demand by a GaAs quantum dot without spectral and temporal filtering. Moreover, we develop a theoretical model that quantitatively reproduces the experimental data and provides insights on the critical figures of merit for the performance of the swapping operation. Our theoretical analysis also indicates how to improve state-of-the-art entangled-photon sources to meet the requirements needed for implementation of quantum dots in long-distance quantum communication protocols.

3.
Nano Lett ; 17(10): 6062-6068, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28892396

ABSTRACT

One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

4.
Nano Lett ; 13(1): 126-30, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23198958

ABSTRACT

In this Letter, we present narrow line width (7 µeV), nearly background-free single-photon emission (g((2))(0) = 0.02) and highly indistinguishable photons (V = 0.73) from site-controlled In(Ga)As/GaAs quantum dots. These excellent properties have been achieved by combining overgrowth on ex situ pit-patterned substrates with vertical stacking of spectrally distinct quantum dot layers. Our study paves the way for large-scale integration of quantum dots into quantum photonic circuits as indistinguishable single-photon sources.

5.
Phys Rev Lett ; 107(21): 217402, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181923

ABSTRACT

We apply external uniaxial stress to tailor the optical properties of In(x)Ga(1-x)As/GaAs quantum dots. Unexpectedly, the emission energy of single quantum dots controllably shifts to both higher and lower energies under tensile strain. Theoretical calculations using a million atom empirical pseudopotential many-body method indicate that the shifting direction and magnitude depend on the lateral extension and more interestingly on the gallium content of the quantum dots. Our experimental results are in good agreement with the underlying theory.

SELECTION OF CITATIONS
SEARCH DETAIL