Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Nat Ecol Evol ; 8(4): 739-751, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347088

ABSTRACT

Climate change and habitat loss present serious threats to nature. Yet, due to a lack of historical land-use data, the potential for land-use change and baseline land-use conditions to interact with a changing climate to affect biodiversity remains largely unknown. Here, we use historical land use, climate data and species observation data to investigate the patterns and causes of biodiversity change in Great Britain. We show that anthropogenic climate change and land conversion have broadly led to increased richness, biotic homogenization and warmer-adapted communities of British birds, butterflies and plants over the long term (50+ years) and short term (20 years). Biodiversity change was found to be largely determined by baseline environmental conditions of land use and climate, especially over shorter timescales, suggesting that biodiversity change in recent periods could reflect an inertia derived from past environmental changes. Climate-land-use interactions were mostly related to long-term change in species richness and beta diversity across taxa. Semi-natural grasslands (in a broad sense, including meadows, pastures, lowland and upland heathlands and open wetlands) were associated with lower rates of biodiversity change, while their contribution to national-level biodiversity doubled over the long term. Our findings highlight the need to protect and restore natural and semi-natural habitats, alongside a fuller consideration of individual species' requirements beyond simple measures of species richness in biodiversity management and policy.


Subject(s)
Butterflies , Animals , Biodiversity , Ecosystem , Birds , Plants
4.
Ambio ; 53(3): 482-496, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37819443

ABSTRACT

Restoration of degraded habitat is frequently used in ecological compensation. However, ecological restoration suffers from innate problems of long delivery times of features shown to be good proxies for biodiversity, e.g., large dead trees. We tested a possible way to circumvent this problem; the translocation of hard-to-come deadwood substrates from an impact area to a compensation area. Following translocation, deadwood density in the compensation area was locally equivalent to the impact area, around 20 m3 ha-1, a threshold for supporting high biodiversity of rare and red-listed species. However, deadwood composition differed between the impact and compensation area, showing a need to include more deadwood types, e.g., late decomposition deadwood, in the translocation scheme. To guide future compensation efforts, the cost for translocation at different spatial scales was calculated. We conclude that translocation of deadwood could provide a cost-efficient new tool for ecological compensation/restoration but that the method needs refinement.


Subject(s)
Ecosystem , Trees , Biodiversity , Forests
5.
Ambio ; 53(1): 126-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37707687

ABSTRACT

Biological recording is a prominent and widely practised form of citizen science, but few studies explore long-term demographic trends in participation and knowledge production. We studied long-term demographic trends of age and gender of participants reporting to a large online citizen science multi-taxon biodiversity platform ( www.artportalen.se ). Adoption by user communities and continually developing Information and Communications Technologies (ICTs) greatly increased the number of participants reporting data, but profound long-term imbalances in gender contribution across species groups persisted over time. Reporters identifying as male dominated in numbers, spent more days in the field reporting and reported more species on each field day. Moreover, an age imbalance towards older participants amplified over time. As the first long-term study of citizen participation by age and gender, our results show that it is important for citizen science project developers to account for cultural and social developments that might exclude participants, and to engage with underrepresented and younger participants. This could facilitate the breadth of engagement and learning across a larger societal landscape, ensure project longevity and biodiversity data representation (e.g. mitigate gender bias influence on the number of reports of different species groups).


Subject(s)
Citizen Science , Female , Male , Humans , Sexism , Learning , Biodiversity
6.
Ecol Appl ; 33(6): e2892, 2023 09.
Article in English | MEDLINE | ID: mdl-37232443

ABSTRACT

Intensive forestry practices have had a negative impact on boreal forest biodiversity; as a consequence, the need for restoration is pressing. Polypores (wood-inhabiting fungi) are key decomposers of dead wood, but, due to a lack of coarse woody debris (CWD) in forest ecosystems, many species are under threat. Here, we study the long-term effects on polypore diversity of two restoration treatments: creating CWD by felling whole trees and prescribed burning. This large-scale experiment is located in spruce-dominated boreal forests in southern Finland. The experiment has a factorial design (n = 3) including three levels of created CWD (5, 30, and 60 m3 ha-1 ) crossed with burning or no burning. In 2018, 16 years after launching the experiment, we inventoried polypores on 10 experimentally cut logs and 10 naturally fallen logs per stand. We found that overall polypore community composition differed between burned and unburned stands. However, only red-listed species abundances and richness were positively affected by prescribed burning. We found no effects of CWD levels created mechanically by felling of trees. We show, for the first time, that prescribed burning is an effective measure for restoring polypore diversity in a late-successional Norway spruce forest. Burning creates CWD with certain characteristics that differ from what is created by CWD restoration by felling trees. Prescribed burning promotes primarily red-listed species, demonstrating its effectiveness as a restoration measure to promote diversity of threatened polypore species in boreal forests. However, because the CWD that the burning creates will decrease over time, to be functional, prescribed burns need to be applied regularly on the landscape scale. Large-scale and long-term experimental studies, such as this one, are invaluable for establishing evidence-based restoration strategies.


Subject(s)
Fires , Picea , Animals , Ecosystem , Forests , Trees , Wood , Forestry , Endangered Species
7.
Ecol Appl ; 33(4): e2851, 2023 06.
Article in English | MEDLINE | ID: mdl-36938961

ABSTRACT

Forest fragmentation increases the amount of edges in the landscape. Differences in wind, radiation, and vegetation structure create edge-to-interior gradients in forest microclimate, and these gradients are likely to be more pronounced during droughts and heatwaves. Although the effects of climate extremes on edge influences have potentially strong and long-lasting impacts on forest understory biodiversity, they are not well understood and are not often considered in management and landscape planning. Here we used a novel method of retrospectively quantifying growth to assess biologically relevant edge influences likely caused by microclimate using Hylocomium splendens, a moss with annual segments. We examined how spatio-temporal variation in drought across 3 years and 46 sites in central Sweden, affected the depth and magnitude of edge influences. We also investigated whether edge effects during drought were influenced by differences in forest structure. Edge effects were almost twice as strong in the drought year compared to the non-drought years, but we did not find clear evidence that they penetrated deeper into the forest in the drought year. Edge influences were also greater in areas that had fewer days with rain during the drought year. Higher levels of forest canopy cover and tree height buffered the magnitude of edge influence in times of drought. Our results demonstrate that edge effects are amplified by drought, suggesting that fragmentation effects are aggravated when droughts become more frequent and severe. Our results suggest that dense edges and buffer zones with high canopy cover can be important ways to mitigate negative drought impacts in forest edges.


Subject(s)
Bryophyta , Forests , Retrospective Studies , Trees , Climate , Biodiversity , Droughts
8.
Landsc Ecol ; 37(7): 1839-1853, 2022.
Article in English | MEDLINE | ID: mdl-35795191

ABSTRACT

Context: Both climatic extremes and land-use change constitute severe threats to biodiversity, but their interactive effects remain poorly understood. In forest ecosystems, the effects of climatic extremes can be exacerbated at forest edges. Objectives: We explored the hypothesis that an extreme summer drought reduced the richness and coverage of old-growth forest species, particularly in forest patches with high edge exposure. Methods: Using a high-resolution spatially explicit precipitation dataset, we could detect variability in drought intensity during the summer drought of 2018. We selected 60 old-growth boreal forest patches in central Sweden that differed in their level of drought intensity and amount of edge exposure. The year after the drought, we surveyed red-listed and old-growth forest indicator species of vascular plants, lichens and bryophytes. We assessed if species richness, composition, and coverage were related to drought intensity, edge exposure, and their interaction. Results: Species richness was negatively related to drought intensity in forest patches with a high edge exposure, but not in patches with less edge exposure. Patterns differed among organism groups and were strongest for cyanolichens, epiphytes associated with high-pH bark, and species occurring on convex substrates such as trees and logs. Conclusions: Our results show that the effects of an extreme climatic event on forest species can vary strongly across a landscape. Edge exposed old-growth forest patches are more at risk under extreme climatic events than those in continuous forests. This suggest that maintaining buffer zones around forest patches with high conservation values should be an important conservation measure. Supplementary information: The online version contains supplementary material available at 10.1007/s10980-022-01441-9.

9.
Ecol Evol ; 11(23): 16434-16445, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938447

ABSTRACT

Trait and functional trait approaches have revolutionized ecology improving our understanding of community assembly, species coexistence, and biodiversity loss. Focusing on traits promotes comparability across spatial and organizational scales, but terms must be used consistently. While several papers have offered definitions, it remains unclear how ecologists operationalize "trait" and "functional trait" terms. Here, we evaluate how researchers and the published literatures use these terms and explore differences among subdisciplines and study systems (taxa and biome). By conducting both a survey and a literature review, we test the hypothesis that ecologists' working definition of "trait" is adapted or altered when confronting the realities of collecting, analyzing and presenting data. From 486 survey responses and 712 reviewed papers, we identified inconsistencies in the understanding and use of terminology among researchers, but also limited inclusion of definitions within the published literature. Discrepancies were not explained by subdiscipline, system of study, or respondent characteristics, suggesting there could be an inconsistent understanding even among those working in related topics. Consistencies among survey responses included the use of morphological, phonological, and physiological traits. Previous studies have called for unification of terminology; yet, our study shows that proposed definitions are not consistently used or accepted. Sources of disagreement include trait heritability, defining and interpreting function, and dealing with organisms in which individuals are not clearly recognizable. We discuss and offer guidelines for overcoming these disagreements. The diversity of life on Earth means traits can represent different features that can be measured and reported in different ways, and thus, narrow definitions that work for one system will fail in others. We recommend ecologists embrace the breadth of biodiversity using a simplified definition of "trait" more consistent with its common use. Trait-based approaches will be most powerful if we accept that traits are at least as diverse as trait ecologists.

10.
Ecol Evol ; 7(1): 368-378, 2017 01.
Article in English | MEDLINE | ID: mdl-28070299

ABSTRACT

The extensive spatial and temporal coverage of many citizen science datasets (CSD) makes them appealing for use in species distribution modeling and forecasting. However, a frequent limitation is the inability to validate results. Here, we aim to assess the reliability of CSD for forecasting species occurrence in response to national forest management projections (representing 160,366 km2) by comparison against forecasts from a model based on systematically collected colonization-extinction data. We fitted species distribution models using citizen science observations of an old-forest indicator fungus Phellinus ferrugineofuscus. We applied five modeling approaches (generalized linear model, Poisson process model, Bayesian occupancy model, and two MaxEnt models). Models were used to forecast changes in occurrence in response to national forest management for 2020-2110. Forecasts of species occurrence from models based on CSD were congruent with forecasts made using the colonization-extinction model based on systematically collected data, although different modeling methods indicated different levels of change. All models projected increased occurrence in set-aside forest from 2020 to 2110: the projected increase varied between 125% and 195% among models based on CSD, in comparison with an increase of 129% according to the colonization-extinction model. All but one model based on CSD projected a decline in production forest, which varied between 11% and 49%, compared to a decline of 41% using the colonization-extinction model. All models thus highlighted the importance of protected old forest for P. ferrugineofuscus persistence. We conclude that models based on CSD can reproduce forecasts from models based on systematically collected colonization-extinction data and so lead to the same forest management conclusions. Our results show that the use of a suite of models allows CSD to be reliably applied to land management and conservation decision making, demonstrating that widely available CSD can be a valuable forecasting resource.

11.
Ecol Appl ; 26(5): 1475-1485, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27755761

ABSTRACT

Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for conservation.


Subject(s)
Forests , Fungi/classification , Human Activities , Demography , Environmental Monitoring , Humans , Models, Biological
12.
PLoS One ; 11(1): e0147004, 2016.
Article in English | MEDLINE | ID: mdl-26799558

ABSTRACT

With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.


Subject(s)
Lichens/growth & development , Picea , Pinus , Species Specificity
13.
FEMS Microbiol Ecol ; 91(3)2015 Mar.
Article in English | MEDLINE | ID: mdl-25764460

ABSTRACT

Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level. In total, 58% of the OTUs were ascomycetes and 31% basidiomycetes. Of the 231 337 reads, 38% were ascomycetes and 60% basidiomycetes. Ecological roles were assigned to 35% of the OTUs, accounting for 62% of the reads. Wood-decaying fungi were the most common group; however, other saprotrophic, mycorrhizal, lichenized, parasitic and endophytic fungi were also common. Fungal communities in logs formed by stem breakage were different to those in logs originating from butt breakage or uprooting. DNA of specific species was detected in logs many years after the last recorded fungal fruiting. Combining taxonomic identification with knowledge of ecological roles may provide valuable insights into properties of fungal communities; however, precise ecological information about many fungal species is still lacking.


Subject(s)
Ascomycota/classification , Basidiomycota/classification , DNA, Fungal/genetics , Picea/microbiology , Wood/microbiology , Ascomycota/genetics , Base Sequence , Basidiomycota/genetics , Forests , Fruiting Bodies, Fungal/genetics , Mycelium/genetics , Mycorrhizae/genetics , Norway , Phylogeny , Sequence Analysis, DNA , Sweden
14.
J Appl Ecol ; 51(1): 53-62, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25653456

ABSTRACT

Clearcutting has been identified as a main threat to forest biodiversity. In the last few decades, alternatives to clearcutting have gained much interest. Living and dead trees are often retained after harvest to serve as structural legacies to mitigate negative effects of forestry. However, this practice is widely employed without information from systematic before-after control-impact studies to assess the processes involved in species responses after clearcutting with retention. We performed a large-scale survey of the occurrence of logging-sensitive and red-listed bryophytes and lichens before and after clearcutting with the retention approach. A methodology was adopted that, for the first time in studies on retention approaches, enabled monitoring of location-specific substrates. We used uncut stands as controls to assess the variables affecting the survival of species after a major disturbance. In total, 12 bryophyte species and 27 lichen species were analysed. All were classified as sensitive to logging, and most species are also currently red-listed. We found that living and dead trees retained after final harvest acted as refugia in which logging-sensitive species were able to survive for 3 to 7 years after logging. Depending on type of retention and organism group, between 35% and 92% of the species occurrences persisted on retained structures. Most species observed outside retention trees or patches disappeared. Larger pre-harvest population sizes of bryophytes on dead wood increased the survival probability of the species and hence buffered the negative effects of logging. Synthesis and applications. Careful spatial planning of retention structures is required to fully embrace the habitats of logging-sensitive species. Bryophytes and lichens persisted to a higher degree in retention patches compared to solitary trees or in the clearcut area. Retaining groups of trees in logged areas will help to sustain populations of species over the clearcut phase. When possible, old logs should be moved into retention patches to provide a more beneficial environment for dead wood-dependent species. Our study also highlights the need for more before-after control-impact studies of retention forestry to explore factors influencing the survival of species after logging.

15.
PLoS One ; 7(9): e45701, 2012.
Article in English | MEDLINE | ID: mdl-23049840

ABSTRACT

At least 10% of the world's tree species are threatened with extinction and pathogens are increasingly implicated in tree threats. Coextinction and threats to affiliates as a consequence of the loss or decline of their host trees is a poorly understood phenomenon. Ash dieback is an emerging infectious disease causing severe dieback of common ash Fraxinus excelsior throughout Europe. We utilized available empirical data on affiliate epiphytic lichen diversity (174 species and 17,800 observations) among 20 ash dieback infected host tree populations of F. excelsior on the island Gotland in the Baltic Sea, Sweden. From this, we used structured scenario projections scaled with empirical data of ash dieback disease to generate probabilistic models for estimating local and regional lichen coextinction risks. Average coextinction probabilities (A) were 0.38 (95% CI ± 0.09) for lichens occurring on F. excelsior and 0.14 (95% CI ± 0.03) when considering lichen persistence on all tree species. A was strongly linked to local disease incidence levels and generally increasing with lichen host specificity to F. excelsior and decreasing population size. Coextinctions reduced affiliate community viability, with significant local reductions in species richness and shifts in lichen species composition. Affiliates were projected to become locally extirpated before their hosts, illuminating the need to also consider host tree declines. Traditionally managed open wooded meadows had the highest incidence of ash dieback disease and significantly higher proportions of affiliate species projected to go extinct, compared with unmanaged closed forests and semi-open grazed sites. Most cothreatened species were not previously red-listed, which suggest that tree epidemics cause many unforeseen threats to species. Our analysis shows that epidemic tree deaths represent an insidious, mostly overlooked, threat to sessile affiliate communities in forested environments. Current conservation and management strategies must account for secondary extinctions associated with epidemic tree death.


Subject(s)
Extinction, Biological , Fraxinus/physiology , Lichens/chemistry , Trees/physiology , Algorithms , Ecosystem , Environment , Models, Statistical , Population Density , Probability , Regression Analysis , Species Specificity , Sweden
16.
J Virol ; 83(8): 3816-25, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19158249

ABSTRACT

Most adenoviruses bind directly to the coxsackie and adenovirus receptor (CAR) on target cells in vitro, but recent research has shown that adenoviruses can also use soluble components in body fluids for indirect binding to target cells. These mechanisms have been identified upon addressing the questions of how to de- and retarget adenovirus-based vectors for human gene and cancer therapy, but the newly identified mechanisms also suggest that the role of body fluids and their components may also be of importance for natural, primary infections. Here we demonstrate that plasma, saliva, and tear fluid promote binding and infection of adenovirus type 5 (Ad5) in respiratory and ocular epithelial cells, which corresponds to the natural tropism of most adenoviruses, and that plasma promotes infection by Ad31. By using a set of binding and infection experiments, we also found that Ad5 and Ad31 require coagulation factors IX (FIX) or X (FX) or just FIX, respectively, for efficient binding and infection. The concentrations of these factors that were required for maximum binding were 1/100th of the physiological concentrations. Preincubation of virions with heparin or pretreatment of cells with heparinase I indicated that the role of cell surface heparan sulfate during FIX- and FX-mediated adenovirus binding and infection is mechanistically serotype specific. We conclude that the use of coagulation factors by adenoviruses may be of importance not only for the liver tropism seen when administering adenovirus vectors to the circulation but also during primary infections by wild-type viruses of their natural target cell types.


Subject(s)
Adenoviridae/physiology , Epithelial Cells/virology , Factor IX/metabolism , Factor X/metabolism , Virus Attachment , Virus Internalization , Adenoviridae/classification , Cell Line, Tumor , Humans , Plasma/virology , Saliva/virology , Tears/virology
17.
Ecol Appl ; 17(2): 482-90, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17489254

ABSTRACT

Coarse woody debris (CWD) is a key habitat for many species in forest ecosystems. To ensure the long-term survival of such species, forest management regimes must include measures that promote dead wood dynamics similar to those of natural forests. Thus, information on CWD dynamics under natural conditions is required, including data pertaining to the underlying agents of disturbance. This study examines modes of mortality, decay rates, and temporal patterns in the availability of Picea abies logs in a Swedish old-growth forest affected by internal, small-scale disturbance. All 684 logs in a 6.6-ha plot were mapped and classified into one of six decay classes. Logs in the early stages of decay were examined for the presence of heart-rot fungi. Six years later all logs were re-inventoried, including newly formed logs. Matrix models based on the transition rates between decay classes showed that it took about 60 years for 90% of the logs to decay beyond class 6 (a deformed trunk with soft wood). Large logs (> 26 cm) decayed 40% more slowly than small logs (< 25 cm). The initial volume of logs was 37.6 m3/ha but increased to 44.8 m3/ha after six years. In addition, there was a large shift in the decay-class distribution. The volume of logs in early and late decay classes increased by 71% and 45%, respectively, while the volume of logs in the intermediate decay classes decreased by 32%. The fluctuations appear to result from pulses in mortality, driven by a combination of strong winds and the heart-rot fungus, Phellinus chrysoloma, which was present in more than 30% of all logs at an early stage of decay. These results show that large temporal fluctuations in dead wood also occur in the absence of large-scale disturbance, and that heart-rot fungi are important factors driving the overall dynamics of dead wood. Since many wood-inhabiting species are naturally rare and have very specific substrate demands, such temporal variability in dead wood availability may have effects on biodiversity and should be taken into account when designing small, protected forest areas.


Subject(s)
Forestry , Fungi/physiology , Picea/physiology , Trees/physiology , Wind , Ecosystem , Models, Biological , Sweden , Time Factors , Wood
18.
J Virol ; 81(2): 954-63, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17079302

ABSTRACT

Most adenoviruses bind to the coxsackie- and adenovirus receptor (CAR). Surprisingly, CAR is not expressed apically on polarized cells and is thus not easily available to viruses. Consequently, alternative mechanisms for entry of coxsackievirus and adenovirus into cells have been suggested. We have found that tear fluid promotes adenovirus infection, and we have identified human lactoferrin (HLf) as the tear fluid component responsible for this effect. HLf alone was found to promote binding of adenovirus to epithelial cells in a dose-dependent manner and also infection of epithelial cells by adenovirus. HLf was also found to promote gene delivery from an adenovirus-based vector. The mechanism takes place at the binding stage and functions independently of CAR. Thus, we have identified a novel binding mechanism whereby adenovirus hijacks HLf, a component of the innate immune system, and uses it as a bridge for attachment to host cells.


Subject(s)
Adenoviruses, Human/pathogenicity , Epithelial Cells/virology , Lactoferrin/metabolism , Receptors, Virus/metabolism , Tears/chemistry , Adenoviruses, Human/classification , Adenoviruses, Human/metabolism , Cell Line, Tumor , Coxsackie and Adenovirus Receptor-Like Membrane Protein , Humans , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...