Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 206(4): e0045223, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38551342

ABSTRACT

The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.


Subject(s)
Escherichia coli K12 , RNA, Transfer , Humans , RNA, Transfer/genetics , Escherichia coli K12/genetics , Bacteria/genetics , Methylation , Gram-Positive Bacteria/genetics
2.
Mol Psychiatry ; 29(5): 1427-1439, 2024 May.
Article in English | MEDLINE | ID: mdl-38287100

ABSTRACT

One mechanism of particular interest to regulate mRNA fate post-transcriptionally is mRNA modification. Especially the extent of m1A mRNA methylation is highly discussed due to methodological differences. However, one single m1A site in mitochondrial ND5 mRNA was unanimously reported by different groups. ND5 is a subunit of complex I of the respiratory chain. It is considered essential for the coupling of oxidation and proton transport. Here we demonstrate that this m1A site might be involved in the pathophysiology of Alzheimer's disease (AD). One of the pathological hallmarks of this neurodegenerative disease is mitochondrial dysfunction, mainly induced by Amyloid ß (Aß). Aß mainly disturbs functions of complex I and IV of the respiratory chain. However, the molecular mechanism of complex I dysfunction is still not fully understood. We found enhanced m1A methylation of ND5 mRNA in an AD cell model as well as in AD patients. Formation of this m1A methylation is catalyzed by increased TRMT10C protein levels, leading to translation repression of ND5. As a consequence, here demonstrated for the first time, TRMT10C induced m1A methylation of ND5 mRNA leads to mitochondrial dysfunction. Our findings suggest that this newly identified mechanism might be involved in Aß-induced mitochondrial dysfunction.


Subject(s)
Adenosine , Alzheimer Disease , Amyloid beta-Peptides , Electron Transport Complex I , Mitochondria , RNA, Messenger , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , RNA, Messenger/metabolism , Adenosine/metabolism , Mitochondria/metabolism , Methylation , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Amyloid beta-Peptides/metabolism , Male , Female , Aged , Methyltransferases/metabolism , Methyltransferases/genetics , Aged, 80 and over , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
3.
bioRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38187551

ABSTRACT

The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance: The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.

4.
Nucleic Acids Res ; 50(8): 4201-4215, 2022 05 06.
Article in English | MEDLINE | ID: mdl-34850949

ABSTRACT

The accurate definition of an epitranscriptome is endangered by artefacts resulting from RNA degradation after cell death, a ubiquitous yet little investigated process. By tracing RNA marker modifications through tissue preparation protocols, we identified a major blind spot from daily lab routine, that has massive impact on modification analysis in small RNAs. In particular, m6,6A and Am as co-varying rRNA marker modifications, appeared in small RNA fractions following rRNA degradation in vitro and in cellulo. Analysing mouse tissue at different time points post mortem, we tracked the progress of intracellular RNA degradation after cell death, and found it reflected in RNA modification patterns. Differences were dramatic between liver, where RNA degradation commenced immediately after death, and brain, yielding essentially undamaged RNA. RNA integrity correlated with low amounts of co-varying rRNA markers. Thus validated RNA preparations featured differentially modified tRNA populations whose information content allowed a distinction even among the related brain tissues cortex, cerebellum and hippocampus. Inversely, advanced cell death correlated with high rRNA marker content, and correspondingly little with the naïve state of living tissue. Therefore, unless RNA and tissue preparations are executed with utmost care, interpretation of modification patterns in tRNA and small RNA are prone to artefacts.


Subject(s)
Artifacts , RNA Processing, Post-Transcriptional , Animals , Mice , RNA/genetics , RNA/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Transfer/metabolism
5.
Curr Alzheimer Res ; 18(10): 733-752, 2021.
Article in English | MEDLINE | ID: mdl-34879802

ABSTRACT

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will further increase with longer life expectancy. The AD brain is marked by severe neurodegeneration, such as the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems, especially in the hippocampus and cerebral cortex. Recent findings highlight the important role of mitochondrial dysfunction and increased oxidative stress in the pathophysiology of late-onset alzheimer's disease (LOAD). These alterations are not only observed in the brain of AD patients but also in the periphery. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and mitochondrial dysfunction as peripheral markers for the detection of AD in blood cells e.g. lymphocytes. We evaluate recent findings regarding impaired mitochondrial function comprising mitochondrial respiration, reduced complex activities of the respiratory chain and altered Mitochondrial Membrane Potential (MMP) in lymphocytes as well as in neurons. Finally, we will question whether these mitochondrial parameters might be suitable as an early peripheral marker for the detection of LOAD but also for the transitional stage between normal aging and Dementia, "Mild Cognitive Impairment" (MCI).


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Brain , Humans , Lymphocytes , Mitochondria
SELECTION OF CITATIONS
SEARCH DETAIL
...