Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 17(20): 2267-72, 2003.
Article in English | MEDLINE | ID: mdl-14558124

ABSTRACT

Capillary electrophoresis (CE) has been combined with atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) for mass spectrometric (MS) detection. Separation conditions using potassium phosphate buffer and ammonium formate buffer have been compared for analysis of eleven pharmaceutical bases. The results showed improvements in separation efficiency and peak symmetry when phosphate buffer was used. The low flow in CE may enable utilization of these advances with MS detection. Compared with ESI, the APPI technique provided a cluster-free background. The enhanced signal-to-noise ratio in the total ion current (TIC) and the reduced spectral background indicated that the APPI process is less affected by non-volatile salts in the CE buffers. This results in a wider range of choice of CE buffers in CE/MS analysis when APPI is the ionization method.

2.
Rapid Commun Mass Spectrom ; 15(6): 375-85, 2001.
Article in English | MEDLINE | ID: mdl-11291114

ABSTRACT

Quantification of unknown components in pharmaceutical, metabolic and environmental samples is an important but difficult task. Most commonly used detectors (like UV, RI or MS) require standards of each analyte for accurate quantification. Even if the chemical structure or elemental composition is known, the response from these detectors is difficult to predict with any accuracy. In inductively coupled plasma mass spectrometry (ICP-MS) compounds are atomised and ionised irrespective of the chemical structure(s) incorporating the element of interest. Liquid chromatography coupled with inductively coupled plasma mass spectrometry (LC/ICP-MS) has been shown to provide a generic detection for structurally non-correlated compounds with common elements like phosphorus and iodine. Detection of selected elements gives a better quantification of tested 'unknowns' than UV and organic mass spectrometric detection. It was shown that the ultrasonic nebuliser did not introduce any measurable dead volume and preserves the separation efficiency of the system. ICP-MS can be used in combination with many different mobile phases ranging from 0-100% organic modifier. The dynamic range was found to exceed 2.5 orders of magnitude. The application of LC/ICP-MS to pharmaceutical drugs and formulations has shown that impurities can be quantified below the 0.1 mol-% level.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drug Industry/instrumentation , Mass Spectrometry/methods , Contrast Media , Gadolinium , Iodine/analysis , Phospholipids/analysis , Phosphopeptides/analysis , Phosphopeptides/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...