Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(38): 45708-45716, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34544237

ABSTRACT

ß-Zn4Sb3 is a cheap nontoxic high-performance thermoelectric material, which unfortunately suffers from stability issues because of zinc migration in thermal and electrical gradients. Here, the thermoelectric properties and thermal stability of ß-Zn4Sb3 mixed with varying sizes and weight percentages of TiO2 nanoparticles are investigated. Furthermore, the stability of pressed ß-Zn4Sb3-TiO2 nanocomposite pellets is investigated by measuring high-energy synchrotron powder X-ray diffraction (PXRD) data during operating conditions using the Aarhus thermoelectric operando setup (ATOS). Through these studies, it is determined that TiO2 nanoparticle addition in pressed pellets of ß-Zn4Sb3 does not prevent Zn migration, and even though effects are seen in the thermal conductivity and electrical resistivity, the overall zT remains unchanged regardless of TiO2 nanoinclusions. For the present samples, the Seebeck coefficients are unaffected by the addition of nanoparticles, and thus, there is no observed energy-filtering effect. The operando PXRD data reveal that the TiO2 nanoinclusions lower the degradation rate by up to 75%, but all samples eventually decompose. This is corroborated by long-term stability tests performed using a thermal gradient. In conclusion, TiO2 nanoinclusions do not degrade the excellent thermoelectric properties of ß-Zn4Sb3, but the stabilizing effect is not sufficient for establishing long-term operating stability.

2.
Phys Chem Chem Phys ; 20(15): 9930-9937, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29619460

ABSTRACT

The mineral inspired material RuAs2 shows promise as a thermoelectric material with its high stability and attractive band structure. In order to validate these expectations phase-pure polycrystalline ruthenium arsenide was synthesized and densified using Spark Plasma Sintering. RuAs2 is an n-type semiconductor with an indirect band gap 0.69 eV as estimated from temperature dependent resistivity data, while the band gap calculated with DFT is 0.64 eV. The thermal conductivity and electrical resistivity are both high with room temperature values of 16 W m-1 K-1 and 170 mΩ cm respectively, leading to modest thermoelectric properties for the intrinsic system. Band structure calculations suggest that chemical modification should preferably be done at the As site to improve the intrinsic properties. Synchrotron powder X-ray diffraction and Rietveld structural refinements show RuAs2 to be a stable line phase up to 1000 K in both in air and in vacuum, and both as a powder and as a dense pellet. No indication of preferential orientation or material gradients are observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...