Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 161: 181-190, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31195334

ABSTRACT

When adequately treated, grey water represents a potent alternative water resource, as it constitutes a large proportion of household wastewater. The objective of this paper was to test a full scale version of a novel compact grey water treatment technology, based on passive aeration and particle trapping in multiple layers. Using a modified dual porosity filtration technology, grey water from a public bath was passed through a stack of eight reactors, each 0.75 m × 0.55 × 0.22 m, serially connected for gravity driven flow from top to bottom in a zig-zag pattern. The topmost reactor served as pre-filter for removal of hair and other larger debris. The lower seven reactors facilitated degradation of bulk organic contaminants in biofilm established on a stack of five fibrous polyamide nets, and trapping of particles by sedimentation on five interlaid corrugated plastic plates. By operating the reactors in a time-controlled batch-mode, the corrugated plates further served to trap air and thus ensure passive aeration of the subsequent batch. The production rate was 1.2 m3/d and the hydraulic retention time 2 h, at an aerial footprint of 0.4 m2, excluding storage tanks. After two weeks of initialization, a biofilm had established and the system was monitored for additionally three weeks. Significantly improved effluent quality was obtained as measured from reductions in turbidity (95%), total suspended solids (94%), chemical oxygen demand (87%), and microbiological parameters (55-98%), and from stable level of dissolved oxygen in effluent of 3.5 mg/L. Future optimization includes custom-made reactors for maximizing production capacity, improved removal of total N and total P, and addition of final disinfection.


Subject(s)
Water Purification , Biofilms , Bioreactors , Filtration , Waste Disposal, Fluid , Wastewater
2.
Appl Environ Microbiol ; 60(11): 4116-23, 1994 Nov.
Article in English | MEDLINE | ID: mdl-16349439

ABSTRACT

The contributions of different organic and inorganic nitrogen and organic carbon sources to heterotrophic bacterioplankton in batch cultures of oceanic, estuarine, and eutrophic riverine environments were compared. The importance of the studied compounds was surprisingly similar among the three ecosystems. Dissolved combined amino acids (DCAA) were most significant, sustaining from 10 to 45% of the bacterial carbon demands and from 42 to 112% of the bacterial nitrogen demands. Dissolved free amino acids (DFAA) supplied 2 to 7% of the carbon and 6 to 24% of the nitrogen incorporated into the bacterial biomass, while dissolved DNA (D-DNA) sustained less than 5 and 12% of the carbon and nitrogen requirements, respectively. Ammonium was the second most important source of nitrogen, meeting from 13 to 45% of the bacterial demand in the oceanic and estuarine cultures and up to 270% of the demand in riverine cultures. Nitrate was taken up in the oceanic cultures (uptake equaled up to 46% of the nitrogen demand) but was released in the two others. Assimilation of DCAA, DFAA, and D-DNA combined supplied 43% of the carbon demand of the bacteria in the oceanic cultures, while approximately 25% of the carbon requirements were met by the three substrates at the two other sites. Assimilation of nitrogen from DCAA, DFAA, D-DNA, NH(4), and NO(3), on the other hand, exceeded production of particulate organic nitrogen in one culture at 27 h and in all cultures over the entire incubation period (50 h). These results suggest that the studied nutrient sources may fully support the nitrogen needs but only partially support the carbon needs of microbial communities of geographically different ecosystems. Furthermore, a comparison of the initial concentrations of the different substrates indicated that relative pool sizes of the substrates seemed to influence which substrates were primarily being utilized by the bacteria.

3.
Appl Environ Microbiol ; 60(11): 4124-33, 1994 Nov.
Article in English | MEDLINE | ID: mdl-16349440

ABSTRACT

The significance of dissolved combined amino acids (DCAA), dissolved free amino acids (DFAA), and dissolved DNA (D-DNA) as sources of C and N for marine bacteria in batch cultures with variable substrate C/N ratios was studied. Glucose, ammonium, alanine, and phosphate were added to the cultures to produce C/N ratios of 5, 10, and 15 and to ensure that phosphorus was not limiting. Maximum bacterial particulate organic carbon production (after 25 h of incubation) was inversely correlated with the C/N ratio: with the addition of identical amounts of carbon, the levels of production were 9.0-, 10.0-, and 11.1-fold higher at C/N ratios of 15, 10, and 5, respectively, relative to an unamended control. The bacterial growth efficiency increased from 22% (control cultures) to 44 to 53% in the cultures with manipulated C/N ratios (C/N-manipulated cultures). Net carbon incorporation from DCAA, DFAA, and D-DNA supported on average 19, 4, and 3% (control cultures and cultures to which only phosphate was added [+P cultures]) and 5, 4, and 0.3% of the particulate organic carbon production (C/N-manipulated cultures), respectively. In the C/N-manipulated cultures, a 2.6- to 3.4-fold-higher level of incorporation of DCAA, relative to that in the control cultures, occurred. Incorporation of D-DNA increased with the substrate C/N ratio, suggesting that D-DNA mainly was a source of N to the bacteria. Organic N (DCAA, DFAA, and D-DNA) sustained 14 to 49% of the net bacterial N production. NH(4) was the dominant N source and constituted 55 to 99% of the total N uptake. NO(3) contributed up to 23% to the total N uptake but was released in two cultures. The studied N compounds sustained nearly all of the bacterial N demand. Our results show that the C/N ratio of dissolved organic matter available to bacteria has a significant influence on the incorporation of individual compounds like DCAA and D-DNA.

4.
Appl Environ Microbiol ; 58(11): 3647-53, 1992 Nov.
Article in English | MEDLINE | ID: mdl-16348808

ABSTRACT

Incorporation of leucine and valine into proteins of freshwater bacteria as a measure of bacterial production was tested in two eutrophic Danish lakes and was related to bacterial production measured by thymidine incorporation. In a depth profile (0 to 8 m) in Frederiksborg Castle Lake, incorporation of 100 nM leucine and valine gave similar rates of protein production. In terms of carbon, this production was about 50% lower than incorporation of 10 nM thymidine. In another depth profile in the same lake, incorporations of 10 nM valine and 100 nM leucine were identical, but differed from incorporations of 10 nM leucine and 100 nM valine. Bacterial carbon production calculated from incorporations of 10 nM thymidine and 10 nM leucine was similar, whereas 10 nM valine and 100 nM leucine and valine indicated an up to 2.4-fold-higher rate of carbon production. In a diel study in Lake Bagsvaerd, incorporation of 100 nM leucine and valine indicated a similar protein production, but the calculated carbon production was about 1.9-fold higher than the production based on uptake of 10 nM thymidine. Different diel changes in incorporation of the two amino acids and in incorporation of thymidine were observed. In both lakes, concentrations of naturally occurring leucine and valine were <5 nM in most samples. This means that the specific activity of a H isotope added at a concentration of 100 nM usually was diluted a maximum of 5%. Net assimilation of natural free amino acids in the lakes sustained 8 to 69% of the net bacterial carbon requirement, estimated from incorporation of leucine, valine, or thymidine. The present results indicate that incorporation of leucine and valine permits realistic measurements of bacterial production in freshwater environments.

5.
Appl Environ Microbiol ; 58(11): 3638-46, 1992 Nov.
Article in English | MEDLINE | ID: mdl-16348807

ABSTRACT

Incorporation of [H]leucine and [H]valine into proteins of freshwater bacteria was studied in two eutrophic lakes. Incorporation of both amino acids had a saturation level of about 50 nM external concentration. Only a fraction of the two amino acids taken up was used in protein synthesis. At 100 nM, the bacteria respired 91 and 78% of leucine and valine taken up, respectively. Respiration of H and C isotopes of leucine gave similar results. Most of the nonrespired leucine was recovered in bacterial proteins, while only up to one-half of the nonrespired valine occurred in proteins. In intracellular pools of the bacteria, [H]leucine reached an isotope saturation of 88 to 100% at concentrations of >40 nM. For [H]valine, an isotope equilibrium of about 90% was obtained at concentrations of >80 nM. Within an incubation period of typically 1 h, tritiated leucine and valine incorporated into proteins of the bacteria reached an isotope saturation of 2 to 6%. In a 99-h batch experiment, bacterial protein synthesis calculated from incorporation of leucine and valine corresponded to 31 and 51% (10 nM) and 89 and 97% (100 nM), respectively, of the chemically determined protein production. Measured conversion factors of 100 nM leucine and valine were 6.4 x 10 and 6.6 x 10 cells per mol, respectively, and fell within the expected theoretical values. The present study demonstrates that incorporation of both valine and leucine produces realistic measurements of protein synthesis in freshwater bacteria and that the incorporation can be used as a measure of bacterial production.

6.
Int J Syst Bacteriol ; 42(1): 156-60, 1992 Jan.
Article in English | MEDLINE | ID: mdl-1371059

ABSTRACT

Species classified within the genus Kitasatosporia share many of the phenotypic characteristics typical of streptomycetes. By using a probabilistic identification scheme, they were identified with Streptomyces exfoliatus cluster 5, a species group within Streptomyces. The four species studied hybridized with a 16S rRNA genus probe for Streptomyces spp., indicating a close relationship between the two genera. The kitasatosporias were resistant to selected polyvalent streptomycete phages tested. Quantitative analysis showed that meso-diaminopimelic acid varied from 49 to 89% in Kitasatosporia species and from 1 to 16% in Streptomyces species depending on growth conditions. On the basis of 16S rRNA analysis, it is proposed to reduce Kitasatosporia to synonymy with Streptomyces. As a result, the new names proposed are Streptomyces mediocidicus comb. nov., Streptomyces phosalacineus comb. nov., Streptomyces setae comb. nov., and Streptomyces griseolosporeus comb. nov., nom. nov.


Subject(s)
RNA, Bacterial/chemistry , RNA, Ribosomal, 16S/chemistry , Streptomyces/classification , Base Sequence , Cell Wall/chemistry , Diaminopimelic Acid/analysis , Molecular Sequence Data , Phenotype , RNA Probes , Sequence Homology, Nucleic Acid , Streptomyces/genetics , Terminology as Topic
7.
Microb Ecol ; 12(3): 247-58, 1986 Sep.
Article in English | MEDLINE | ID: mdl-24212678

ABSTRACT

This study examined the importance of zooplankton in the flux of dissolved free amino acids (DFAA) in the water and into bacteria. DFAA release rates were followed in laboratory grazing experiments usingDaphnia galeata andEudiaptomus graciloides as grazers, andScenedesmus acutus andSynechococcus elongatus as food sources. Except for minor initial peaks, DFAAs were released continuously during the first 2 hours and made up 6-12% (in one experiment 50%) of the calculated ingestion rates. During three diel studies in lakes, effects of removal and increase of the density of zooplankton (>200µm) on the pools of DFAA as well as on the bacterial production were followed. During two of the diel studies, higher DFAA pools were measured when 3-4 times the natural zooplankton density was present, and in one study a minor increase also occurred in the bacterial production, compared with results from experiments without zooplankton and with a natural zooplankton density. The increase in bacterial growth coincided with a decline in DFAA. During the third study, neither DFAA nor the bacterial production changed significantly when the zooplankton density was increased 3 times. Removal of zooplankton, however, caused a decline in both DFAA and bacterial production. Our data suggest a close relationship between occurrence of zooplankton and release of DFAA, but the factors regulating the amount of DFAA released and its effect on bacterial growth are not yet understood.

8.
Microb Ecol ; 10(4): 301-16, 1984 Dec.
Article in English | MEDLINE | ID: mdl-24221174

ABSTRACT

Microbial assimilation of 3 amino acids (glutamic acid, alanine, and ornithine) was characterized in 3 lakes and 2 marine stations using the Michaelis-Menten kinetic approach. The calculated Kt + Sn concentrations were related to chemical concentration measurements of dissolved free amino acids (DFAA) to evaluate the biological and the chemical determinations of the DFAA pools. Concentrations of Kt + Sn always were larger than chemical measurements of the Sn concentrations. Kt + Sn and Sn varied from 11.5 and 9.5 nM (alanine, oligotrophic lake) to 288.7 and 89.9 nM (ornithine, marine harbor station), respectively. Subtracting Sn from the Kt + Sn concentrations, Kt was found to range from 12-897% of the chemically measured Sn concentrations. To test whether the DFAA actually were free, dissolved molecules, dissolved material in the water samples was separated into various molecular size classes by means of gel permeation chromatography. From 47-116% of the DFAA in the untreated water samples was recovered in the low molecular fraction (<700 Daltons). Variation in recoveries mainly appeared to be due to an incomplete chromatographic separation and difficulties in obtaining proper blank levels. The present observations suggest that labeled tracers can be used in the study of DFAA assimilation and that the DFAA are free, dissolved molecules. This partly conflicts with previously published reports.

SELECTION OF CITATIONS
SEARCH DETAIL
...