Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 16(3)2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28973741

ABSTRACT

The objective of this study was to estimate the adaptability and stability of grain sorghum hybrids grown under post-flowering water stress and non-stress conditions. The trials were carried out in Nova Porteirinha-MG during the season of 2014 and 2015, and in Teresina-PI in the 2014 season. Twenty-nine-grain sorghum hybrids were evaluated, in a randomized complete block design, with three replications. Plots consisted of four lines with 3 m long. The grain yield data were submitted to the individual variance analysis, having considered the effects of the hybrids as fixed and the other effects as random. The joint analysis was carried out, and when the interaction genotypes x environments was significant, the grain yield data were submitted to the adaptability and stability analysis by the GGE biplot method. A substantial reduction in the grain yield in environments with water stress was found. The highest yielding hybrids under water stress conditions in Nova Porteirinha-MG were 50A50, AG1080, AG1090, DKB550, DKB590, Jade, and BM737, and the highest yielding hybrids under the water stress in Teresina-PI were 1G282, 1G244, and A9721R. Considering all environments, the highest yielding hybrids were 1G282, DKB540, A9721R, 1G100, and AG1090.


Subject(s)
Hybridization, Genetic , Plant Breeding , Sorghum/genetics , Stress, Physiological , Droughts , Gene-Environment Interaction , Genotype
2.
Genet Mol Res ; 16(2)2017 May 04.
Article in English | MEDLINE | ID: mdl-28481403

ABSTRACT

Given the importance of selecting lines to obtain hybrids, we aimed to verify the relationship between morphological traits that can be used as the criteria for the selection of sorghum lines with high grain yield and earliness. A total of 18 traits were evaluated in 160 sorghum elite lines, in an incomplete block design with two replicates. A correlation network was used to graphically express the estimates of phenotypic and genotypic correlations between the traits. Two path analyses were processed, the first considering grain yield and the second considering flowering as the principle dependent variable. In general, most of the variation in the grain yield and flowering of sorghum lines was explained by the traits evaluated. Selecting sorghum lines with greater width of the third leaf blade from flag leaf, panicle weight, and panicle harvest index might lead to increased grain yield, and selecting sorghum genotypes with higher plant height might lead to reduced earliness and increased grain yield. Thus, the results suggest the establishment of selection indices aiming at simultaneously increasing the grain yield and earliness in sorghum genotypes.


Subject(s)
Edible Grain/genetics , Quantitative Trait, Heritable , Sorghum/genetics , Edible Grain/growth & development , Genotype , Sorghum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...