Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Trop ; 254: 107189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522630

ABSTRACT

Cutaneous leishmaniasis (CL) is a vector-borne disease characterized by skin lesions that can evolve into high-magnitude ulcerated lesions. Thus, this study aimed to develop an innovative nanoemulsion (NE) with clove oil, Poloxamer® 407, and multiple drugs, such as amphotericin B (AmB) and paromomycin (PM), for use in the topical treatment of CL. METHODS: Droplet size, morphology, drug content, stability, in vitro release profile, in vitro cytotoxicity on RAW 264.7 macrophages, and antileishmanial activity using axenic amastigotes of Leishmania amazonensis were assessed for NEs. RESULTS: After optimizing the formulation parameters, such as the concentration of clove oil and drugs, using an experimental design, it was possible to obtain a NE with an average droplet size of 40 nm and a polydispersion index of 0.3, and these parameters were maintained throughout the 365 days. Furthermore, the NE showed stability of AmB and PM content for 180 days under refrigeration (4 °C), presented a pH compatible with the skin, and released modified AmB and PM. NE showed the same toxicity as free AmB and higher toxicity than free PM against RAW 264.7 macrophages. The same activity as free AmB, and higher activity than free PM against amastigotes L. amazonensis. CONCLUSION: It is possible to develop a NE for the treatment of CL; however, complementary studies regarding the antileishmanial activity of NE should be carried out.


Subject(s)
Amphotericin B , Antiprotozoal Agents , Emulsions , Leishmaniasis, Cutaneous , Paromomycin , Paromomycin/pharmacology , Paromomycin/administration & dosage , Amphotericin B/pharmacology , Amphotericin B/administration & dosage , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/parasitology , Leishmania mexicana/drug effects , Clove Oil/pharmacology , Clove Oil/chemistry , Poloxamer/chemistry , Drug Stability , Nanoparticles/chemistry
2.
J Oleo Sci ; 73(1): 11-23, 2024.
Article in English | MEDLINE | ID: mdl-38171726

ABSTRACT

Fruits such as bacaba (Oenocarpus bacaba Mart), pracaxi (Pentaclethra macroloba Kuntze) and uxi (Endopleura uchi (Huber) Cuatrec), from the Amazon rainforest, are potentially interesting for studies of natural products. The current article aims at mapping and characterizing studies on the bacaba, pracaxi and uxi species. This review reports the main bioactive compounds identified in these species and discusses their therapeutic potential. Searches were performed in MEDLINE (Via Pubmed) and Web of Science. Thirty-one studies that described or evaluated the development of formulations aimed at the therapeutic use of the species were included. The findings suggest that species have the potential for the development of pharmaceutical formulations due to their therapeutic properties. However, further studies are required to assess safety and efficacy of these products. Therefore, it is suggested that new research studies propose strategies so that technological development is based on awareness and preservation of the biome.


Subject(s)
Arecaceae , Fabaceae , Fruit , Chromatography, High Pressure Liquid , Oils
3.
Nanotechnology ; 28(6): 065101, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28071592

ABSTRACT

Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.


Subject(s)
Drug Carriers , Indoles/pharmacology , Leishmania infantum/drug effects , Leishmania mexicana/drug effects , Organometallic Compounds/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Administration, Cutaneous , Animals , Cell Survival/drug effects , Cell Survival/radiation effects , Clove Oil/chemistry , Drug Compounding/methods , Emulsions , Hydrogen-Ion Concentration , Indoles/chemistry , Isoindoles , Leishmania infantum/growth & development , Leishmania infantum/radiation effects , Leishmania mexicana/growth & development , Leishmania mexicana/radiation effects , Light , Mice , Microbial Sensitivity Tests , Nanostructures/chemistry , Nitric Oxide , Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Poloxamer/chemistry , RAW 264.7 Cells , Zinc Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...