Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(26): 14683-14691, 2019 May 09.
Article in English | MEDLINE | ID: mdl-35516306

ABSTRACT

Microcystins (MCs) are a class of cyclic heptapeptides with more than 100 variants produced by cyanobacteria present in surface waters. MCs are potent hepatotoxic agents responsible for fatal poisoning in animals and humans. Several techniques are employed in the detection of MCs, however, there is a shortage of methods capable of discriminating variants of MCs. In this work we demonstrate that the α-hemolysin (αHL) nanopore can detect and discriminate the variants (LR, YR and RR) of MCs in aqueous solution. The discrimination process is based on the analysis of the residence times of each variant of MCs within the unitary nanopore, as well as, on the amplitudes of the blockages in the ionic current flowing through it. Simulations of molecular dynamics and calculation of the electrostatic potential revealed that the variants of MCs present different charge distribution and correlated with the three patterns on the amplitudes of the blockages in the ionic current. Additionally, molecular docking analysis indicates different patterns of interaction of the variants of MCs with two specific regions of the nanopore. We conclude that αHL nanopore can discriminate variants of microcystins by a mechanism based mainly on electrostatic interaction. Finally, we propose the use of nanopore-based technology as a promising method for analyzing microcystins in aqueous solutions.

2.
Biophys J ; 100(12): 2929-35, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21689526

ABSTRACT

Despite extensive research in the nanopore-sensing field, there is a paucity of experimental studies that investigate specific ion effects in confined spaces, such as in nanopores. Here, the effect of halogen anions on a simple bimolecular complexation reaction between monodisperse poly(ethylene glycol) (PEG) and α-hemolysin nanoscale pores have been investigated at the single-molecule level. The anions track the Hofmeister ranking according to their influence upon the on-rate constant. An inverse relationship was demonstrated for the off-rate and the solubility of PEG. The difference among anions spans several hundredfold. Halogen anions play a very significant role in the interaction of PEG with nanopores although, unlike K(+), they do not bind to PEG. The specific effect appears dominated by a hydration-dehydration process where ions and PEG compete for water. Our findings provide what we believe to be novel insights into physicochemical mechanisms involved in single-molecule interactions with nanopores and are clearly relevant to more complicated chemical and biological processes involving a transient association of two or more molecules (e.g., reception, signal transduction, enzyme catalysis). It is anticipated that these findings will advance the development of devices with nanopore-based sensors for chemical and biological applications.


Subject(s)
Biophysics/methods , Halogens/chemistry , Models, Chemical , Anions , Bacterial Toxins/metabolism , Electric Conductivity , Electroosmosis , Hemolysin Proteins/metabolism , Kinetics , Limit of Detection , Polyethylene Glycols/chemistry , Solubility , Solutions , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...