Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Technol Int ; 29(1): 25-39, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34756149

ABSTRACT

Edible coating can improve fruits shelf life and, consequently, reduce their waste. Chitosan, which presents a potential for chemical modifications and capacity to form films, can be an alternative for coating due to its biocompatibility, biodegradability, and antimicrobial properties. Chitosan film can be obtained through casting method presenting suitable mechanical properties, such as resistance to traction and elongation, ability to adhere to surfaces and selective permeability to gases, such as O2 and CO2. However, it is highly permeable to water vapor, which can limit its potential coating use. The properties of chitosan films can be improved through the formation of composites by inserting nanoclays as montmorillonite in the polymeric matrix. The objective of this study was to develop and characterize chitosan/montmorillonite nanocomposites for fruit coating aiming for future applications in the field of smart packaging. Nanocomposites were characterized by its microstructure, thermal, mechanical, and physicochemical properties. X-ray diffraction analysis indicated changes in crystallinity with the insertion of montmorillonite. Nanocomposites became more transparent and significantly reduced its water permeability rate with 0.5% w/w montmorillonite addition. Elastic rigidity and tensile strength of the films were improved. Chitosan/montmorillonite nanocomposites demonstrated the potential to improve the storage time of Williams pears.


Subject(s)
Chitosan , Edible Films , Nanocomposites , Bentonite/chemistry , Chitosan/chemistry , Nanocomposites/chemistry , Tensile Strength , Permeability , Food Packaging/methods
2.
Polymers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559891

ABSTRACT

Most composites produced come from fossil fuel sources. Renewable strategies are needed for the production of composites. Charcoal fines are considered waste and an alternative for the production of biocomposites. The charcoal fines resulting from the pyrolysis of any biomass are an efficient alternative for the production of green composites. Studies to understand how the pyrolysis parameters influence the properties of this material for the production of biocomposites are necessary. Charcoal has a high carbon content and surface area, depending on final production temperatures. This study aims to evaluate charcoal fines as potential reinforcing agents in biocomposites. This study investigated for the first time charcoal fines from three pyrolysis temperatures (400, 600, and 800 °C) to identify the most suitable charcoal for use as a raw material in the production of carbon biocomposites with 30% by weight incorporated into a polyester matrix composite. Apparent density, porosity, morphology, and immediate chemical composition and Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) of charcoal fines were evaluated. The charcoal fines produced at 800 °C showed interesting potential as polymeric matrix fillers due to their higher porosity (81.08%), fixed carbon content (96.77%), and hydrophobicity. The biocomposites were analyzed for flexural and tensile strength and scanning electron microscopy. The results revealed an improvement in resistance at elevated temperatures, especially at 800 °C, with higher breaking strength (84.11 MPa), modulus of elasticity (4064.70 MPa), and traction (23.53 MPa). Scanning electron microscopy revealed an improvement in morphology, with a decrease in roughness at 800 °C, which caused greater adhesion to the polyester matrix. These results revealed a promising new biocomposite compared to other natural lignocellulosic polymeric composites (NLFs) in engineering applications.

3.
Environ Sci Pollut Res Int ; 29(6): 8665-8683, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34490567

ABSTRACT

The growing demand for products with lower environmental impact and the extensive applicability of cellulose nanofibrils (CNFs) have received attention due to their attractive properties. In this study, bio-based films/nanopapers were produced with CNFs from banana tree pseudostem (BTPT) wastes and Eucalyptus kraft cellulose (EKC) and were evaluated by their properties, such as mechanical strength, biodegradability, and light transmittance. The CNFs were produced by mechanical fibrillation (after 20 and 40 passages) from suspensions of BTPT (alkaline pre-treated) and EKC. Films/nanopapers were produced by casting from both suspensions with concentrations of 2% (based in dry mass of CNF). The BTPT films/nanopapers showed greater mechanical properties, with Young's modulus and tensile strength around 2.42 GPa and 51 MPa (after 40 passages), respectively. On the other hand, the EKC samples showed lower disintegration in water after 24 h and biodegradability. The increase in the number of fibrillation cycles produced more transparent films/nanopapers and caused a significant reduction of water absorption for both raw materials. The permeability was similar for the films/nanopapers from BTPT and EKC. This study indicated that attractive mechanical properties and biodegradability, besides low cost, could be achieved by bio-based nanomaterials, with potential for being applied as emulsifying agents and special membranes, enabling more efficient utilization of agricultural wastes.


Subject(s)
Nanostructures , Cellulose , Lignin , Tensile Strength
4.
Int J Biol Macromol ; 170: 810-819, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33385457

ABSTRACT

The quality of green coffee beans (GCBs) is possibly affected by storage conditions. Edible polymer coatings for GCBs can help preserve flavors and improve shelf life of GCBs. This study aimed to incorporate α-tocopherol, a powerful antioxidant, in thermoplastic starch [TPS] and chitosan [TPC] and determined the best cavitation energy (960-3840 J·mL-1) using an ultrasonic probe. Then, we evaluated the incorporation of bentonite (0% and 2% m/m) and α-tocopherol (0% and 10% m/m) in the best energy cavitation/biopolymer combination. The TPS and TPC coatings demonstrated good adherence to the GCBs, measured by surface energy. The dispersion of α-tocopherol in TPC, with cavitation energy 960 J·mL-1, promoted greater stability (greater zeta potential), thereby increasing antioxidant activity by 28% compared to TPS, therefore, was selected for a second stage. Incorporation of 2% bentonite into the TPC, with 10% α-tocopherol, resulted in a 3.7 × 10-10 g·m-1·s-1·Pa-1 water vapor permeability, which is satisfactory for prevented of moisture gain during storage. The compressive load showed values of 375 N to the non-coated GCB and around 475 N with the insertion of coatings to the GCB. Thus, a TPC/α-tocopherol/bentonite combination, dispersed with 960 J·mL-1 energy, was highly effective in the development of biopolymeric coatings for the GCBs.


Subject(s)
Bentonite , Chitosan , Coffee , Starch , alpha-Tocopherol , alpha-Tocopherol/chemistry , Antioxidants/chemistry , Bentonite/chemistry , Chitosan/chemistry , Coffee/chemistry , Food Preservation/methods , Starch/chemistry , Steam
SELECTION OF CITATIONS
SEARCH DETAIL
...