Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 21(12)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205344

ABSTRACT

As smart devices have become commonly used to access internet banking applications, these devices constitute appealing targets for fraudsters. Impersonation attacks are an essential concern for internet banking providers. Therefore, user authentication countermeasures based on biometrics, whether physiological or behavioral, have been developed, including those based on touch dynamics biometrics. These measures take into account the unique behavior of a person when interacting with touchscreen devices, thus hindering identitification fraud because it is hard to impersonate natural user behaviors. Behavioral biometric measures also balance security and usability because they are important for human interfaces, thus requiring a measurement process that may be transparent to the user. This paper proposes an improvement to Biotouch, a supervised Machine Learning-based framework for continuous user authentication. The contributions of the proposal comprise the utilization of multiple scopes to create more resilient reasoning models and their respective datasets for the improved Biotouch framework. Another contribution highlighted is the testing of these models to evaluate the imposter False Acceptance Error (FAR). This proposal also improves the flow of data and computation within the improved framework. An evaluation of the multiple scope model proposed provides results between 90.68% and 97.05% for the harmonic mean between recall and precision (F1 Score). The percentages of unduly authenticated imposters and errors of legitimate user rejection (Equal Error Rate (EER)) are between 9.85% and 1.88% for static verification, login, user dynamics, and post-login. These results indicate the feasibility of the continuous multiple-scope authentication framework proposed as an effective layer of security for banking applications, eventually operating jointly with conventional measures such as password-based authentication.


Subject(s)
Biometric Identification , Mobile Applications , Biometry , Computer Security , Confidentiality , Humans
2.
Sci Rep ; 9(1): 18131, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31792323

ABSTRACT

Studies on Poly(p-Phenylene Vinylene) (PPV) and derivatives have experienced enormous growth since they were successfully used to fabricate the first efficient prototypes of Polymer Light-Emitting Diodes in the 90s. Despite this rapid progress, understanding the relationship between charge transport and the morphology in these materials remains a challenge. Here, we shed light on the understanding of the transport mechanism of polarons and bipolarons in PPVs by developing a two-dimensional tight-binding approach that includes lattice relaxation effects. Remarkably, the results show that the PPV lattice loses the energy related to its conjugation during time by transferring this amount of energy to electrons. Such a process for energy transfer permits the quasiparticles to overcome the potential barrier imposed by the local lattice deformations, that are formed in the presence of an additional charge and, consequently, their electric field assisted transport takes place. Within the framework of this transport mechanism, a better insight into the origin of the carrier mobility in PPV and derivatives can be achieved and would be a useful guide for improving their chemical structures and morphologies.

SELECTION OF CITATIONS
SEARCH DETAIL