Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e16018, 2023.
Article in English | MEDLINE | ID: mdl-38025744

ABSTRACT

Molecular gut content analysis via diagnostic PCR or high-throughput sequencing (metabarcoding) of consumers allows unravelling of feeding interactions in a wide range of animals. This is of particular advantage for analyzing the diet of small invertebrates living in opaque habitats such as the soil. Due to their small body size, which complicates dissection, microarthropods are subjected to whole-body DNA extraction-step before their gut content is screened for DNA of their food. This poses the problem that body surface contaminants, such as fungal spores may be incorrectly identified as ingested food particles for fungivorous species. We investigated the effectiveness of ten methods for body surface decontamination in litter-dwelling oribatid mites using Steganacarus magnus as model species. Furthermore, we tested for potential adverse effects of the decontamination techniques on the molecular detection of ingested prey organisms. Prior to decontamination, oribatid mites were fed with an oversupply of nematodes (Plectus sp.) and postmortem contaminated with fungal spores (Chaetomium globosum). We used diagnostic PCR with primers specific for C. globosum and Plectus sp. to detect contaminants and prey, respectively. The results suggest that chlorine bleach (sodium hypochloride, NaClO, 5%) is most efficient in removing fungal surface contamination without significantly affecting the detection of prey DNA in the gut. Based on these results, we provide a standard protocol for efficient body surface decontamination allowing to trace the prey spectrum of microarthropods using molecular gut content analysis.


Subject(s)
Mites , Nematoda , Animals , Food Chain , Ecosystem , Mites/genetics , Nematoda/genetics , DNA , Chromadorea
2.
Ecol Evol ; 11(9): 4295-4309, 2021 May.
Article in English | MEDLINE | ID: mdl-33976811

ABSTRACT

Although nitrogen (N) deposition is increasing globally, N availability still limits many organisms, such as microorganisms and mesofauna. However, little is known to which extent soil organisms rely on mineral-derived N and whether plant community composition modifies its incorporation into soil food webs. More diverse plant communities more effectively compete with microorganisms for mineral N likely reducing the incorporation of mineral-derived N into soil food webs. We set up a field experiment in experimental grasslands with different levels of plant species and functional group richness. We labeled soil with 15NH4 15NO3 and analyzed the incorporation of mineral-derived 15N into soil microorganisms and mesofauna over 3 months. Mineral-derived N incorporation decreased over time in all investigated organisms. Plant species richness and presence of legumes reduced the uptake of mineral-derived N into microorganisms. In parallel, the incorporation of mineral-derived 15N into mesofauna species declined with time and decreased with increasing plant species richness in the secondary decomposer springtail Ceratophysella sp. Effects of both plant species richness and functional group richness on other mesofauna species varied with time. The presence of grasses increased the 15N incorporation into Ceratophysella sp., but decreased it in the primary decomposer oribatid mite Tectocepheus velatus sarekensis. The results highlight that mineral N is quickly channeled into soil animal food webs via microorganisms irrespective of plant diversity. The amount of mineral-derived N incorporated into soil animals, and the plant community properties affecting this incorporation, differed markedly between soil animal taxa, reflecting species-specific use of food resources. Our results highlight that plant diversity and community composition alter the competition for N in soil and change the transfer of N across trophic levels in soil food webs, potentially leading to changes in soil animal population dynamics and community composition. Sustaining high plant diversity may buffer detrimental effects of elevated N deposition on soil biota.

SELECTION OF CITATIONS
SEARCH DETAIL
...