Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 605-606: 26-37, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28662428

ABSTRACT

A diesel spill occurring at Carlini Station (King George Island (Isla 25 de Mayo), South Shetland Islands) in 2009 started the study of the fate of the hydrocarbons and their effect on the bacterial communities of the Potter Cove ecosystem. Soils and sediments were sampled across the 200-meter long diesel plume towards Potter Cove four and 15months after the spill. The sampling revealed a second fuel leakage from an underground pipeline at the spill site. The hydrocarbon fraction spilt over frozen and snow-covered ground reached the sea and dispersed with the currents. Contrary, diesel that infiltrated unfrozen soil remained detectable for years, and was seeping with ground water towards coastal marine sediments. Structural changes of the bacterial communities as well as hydrocarbon, carbon and nitrogen contents were investigated in sediments in front of the station, two affected terrestrial sites, and a terrestrial non-contaminated reference site. Bacterial communities (16S rRNA gene clone libraries) changed over time in contaminated soils and sediments. At the underground seepage site of highest contamination (5812 to 366µgg-1dw hydrocarbons from surface to 90-cm depth), communities were dominated by Actinobacteria (18%) and a betaproteobacterium closely related to Polaromonas naphthalenivorans (40%). At one of the spill sites, affected exclusively at the surface, contamination disappeared within one year. The same bacterial groups were enriched at both contaminated sites. This response at community level suggests that the cold-adapted indigenous microbiota in soils of the West Antarctic Peninsula have a high potential for bioremediation and can support soil cleaning actions in the ecosystem. Intensive monitoring of pollution and site assessment after episodic fuel spills is required for decision-making towards remediation strategies.


Subject(s)
Bacteria/classification , Geologic Sediments/microbiology , Petroleum Pollution , Soil Microbiology , Soil/chemistry , Antarctic Regions , Bacteria/metabolism , Biodegradation, Environmental , Hydrocarbons/chemistry , Islands , RNA, Ribosomal, 16S/genetics
2.
BMC Res Notes ; 9: 238, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27112435

ABSTRACT

BACKGROUND: Loss of genetic variability due to environmental changes, limitation of gene flow between pools of individuals or putative selective pressure at specific markers, were previously documented for Antarctic notothenioid fish species. However, so far no studies were performed for the Gaudy notothen Lepidonotothen nudifrons. Starting from a species-specific spleen transcriptome library, we aimed at isolating polymorphic microsatellites (Type I; i.e. derived from coding sequences) suitable to quantify the genetic variability in this species, and additionally to assess the population genetic structure and demography in nototheniids. RESULTS: We selected 43,269 transcripts resulting from a MiSeq sequencer run, out of which we developed 19 primer pairs for sequences containing microsatellite repeats. Sixteen loci were successfully amplified in L. nudifrons. Eleven microsatellites were polymorphic and allele numbers per locus ranged from 2 to 17. In addition, we amplified loci identified from L. nudifrons in two other congeneric species (L. squamifrons and L. larseni). Thirteen loci were highly transferable to the two congeneric species. Differences in polymorphism among species were detected. CONCLUSIONS: Starting from a transcriptome of a non-model organism, we were able to identify promising polymorphic nuclear markers that are easily transferable to other closely related species. These markers can be a key instrument to monitor the genetic structure of the three Lepidonotothen species if genotyped in larger population samples. When compared with anonymous loci isolated in other notothenioids, i.e. Type II (isolated from genomic libraries), they offer the possibility to test how the effects of occurring environmental change influence the population genetic structure in each species and subsequently the composition of the entire ecosystem.


Subject(s)
Gene Expression Profiling/methods , Microsatellite Repeats/genetics , Perciformes/genetics , Polymorphism, Genetic , Transcriptome/genetics , Animals , Gene Frequency , Genotype , Perciformes/classification , Species Specificity , Spleen/metabolism
3.
Mar Genomics ; 24 Pt 3: 237-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26112896

ABSTRACT

In this study, we describe a de novo sequencing and assembly of the spleen transcriptome of Lepidonotothen nudifrons, a notothenioid fish widely distributed around the Antarctic Peninsula and the Scotia Arc. Sequences were generated on an Illumina MiSeq system and assembled to a total of 112,477 transcripts. Putative functional annotation was possible for more than 34% of the transcripts. This data will be relevant for future studies targeting the erythrocyte turnover, oxygen transport mechanism and immune system, which are key functional traits to investigate cold adaptation and thermal sensitivity of Antarctic notothenioids.


Subject(s)
Perciformes/genetics , Perciformes/metabolism , Spleen/metabolism , Transcriptome , Animals , Nucleic Acid Amplification Techniques , RNA/genetics , RNA/metabolism
4.
Appl Environ Microbiol ; 69(11): 6610-9, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14602620

ABSTRACT

A comprehensive assessment of bacterial diversity and community composition in arctic and antarctic pack ice was conducted through cultivation and cultivation-independent molecular techniques. We sequenced 16S rRNA genes from 115 and 87 pure cultures of bacteria isolated from arctic and antarctic pack ice, respectively. Most of the 33 arctic phylotypes were >97% identical to previously described antarctic species or to our own antarctic isolates. At both poles, the alpha- and gamma-proteobacteria and the Cytophaga-Flavobacterium group were the dominant taxonomic bacterial groups identified by cultivation as well as by molecular methods. The analysis of 16S rRNA gene clone libraries from multiple arctic and antarctic pack ice samples revealed a high incidence of closely overlapping 16S rRNA gene clone and isolate sequences. Simultaneous analysis of environmental samples with fluorescence in situ hybridization (FISH) showed that approximately 95% of 4',6'-diamidino-2-phenylindole (DAPI)-stained cells hybridized with the general bacterial probe EUB338. More than 90% of those were further assignable. Approximately 50 and 36% were identified as gamma-proteobacteria in arctic and antarctic samples,respectively. Approximately 25% were identified as alpha-proteobacteria, and 25% were identified as belonging to the Cytophaga-Flavobacterium group. For the quantification of specific members of the sea ice community, new oligonucleotide probes were developed which target the genera Octadecabacter, Glaciecola, Psychrobacter, Marinobacter, Shewanella, and Polaribacter: High FISH detection rates of these groups as well as high viable counts corroborated the overlap of clone and isolate sequences. A terrestrial influence on the arctic pack ice community was suggested by the presence of limnic phylotypes.


Subject(s)
Bacteria/classification , Ecosystem , Genetic Variation , Ice/analysis , Seawater/microbiology , Antarctic Regions , Arctic Regions , Bacteria/genetics , Bacteria/isolation & purification , Colony Count, Microbial , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Genes, rRNA , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...