Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 11(19): 9217-9233, 2021.
Article in English | MEDLINE | ID: mdl-34646367

ABSTRACT

Tryptophan (Trp)-catabolic enzymes (TCEs) produce metabolites that activate the aryl hydrocarbon receptor (AHR) and promote tumor progression and immunosuppression in glioblastoma. As therapies targeting TCEs or AHR become available, a better understanding of Trp metabolism is required. Methods: The combination of LC-MS/MS with chemical isobaric labeling enabled the simultaneous quantitative comparison of Trp and its amino group-bearing metabolites in multiple samples. We applied this method to the sera of a cohort of 43 recurrent glioblastoma patients and 43 age- and sex-matched healthy controls. Tumor volumes were measured in MRI data using an artificial neural network-based approach. MALDI MSI visualized Trp and its direct metabolite N-formylkynurenine (FK) in glioblastoma tissue. Analysis of scRNA-seq data was used to detect the presence of Trp metabolism and AHR activity in different cell types in glioblastoma. Results: Compared to healthy controls, glioblastoma patients showed decreased serum Trp levels. Surprisingly, the levels of Trp metabolites were also reduced. The decrease became smaller with more enzymatic steps between Trp and its metabolites, suggesting that Trp availability controls the levels of its systemic metabolites. High tumor volume associated with low systemic metabolite levels and low systemic kynurenine levels associated with worse overall survival. MALDI MSI demonstrated heterogeneity of Trp catabolism across glioblastoma tissues. Analysis of scRNA-seq data revealed that genes involved in Trp metabolism were expressed in almost all the cell types in glioblastoma and that most cell types, in particular macrophages and T cells, exhibited AHR activation. Moreover, high AHR activity associated with reduced overall survival in the glioblastoma TCGA dataset. Conclusion: The novel techniques we developed could support the identification of patients that may benefit from therapies targeting TCEs or AHR activation.


Subject(s)
Glioblastoma/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Cell Line, Tumor , Chromatography, Liquid/methods , Cohort Studies , Databases, Genetic , Female , Glioblastoma/blood , Glioblastoma/genetics , Humans , Immunotherapy , Male , Middle Aged , Receptors, Aryl Hydrocarbon/genetics , Tandem Mass Spectrometry/methods , Tryptophan/blood
2.
J Cogn Neurosci ; 23(7): 1752-64, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20666594

ABSTRACT

Spoken word recognition is achieved via competition between activated lexical candidates that match the incoming speech input. The competition is modulated by prelexical cues that are important for segmenting the auditory speech stream into linguistic units. One such prelexical cue that listeners rely on in spoken word recognition is phonotactics. Phonotactics defines possible combinations of phonemes within syllables or words in a given language. The present study aimed at investigating both temporal and topographical aspects of the neuronal correlates of phonotactic processing by simultaneously applying ERPs and functional near-infrared spectroscopy (fNIRS). Pseudowords, either phonotactically legal or illegal with respect to the participants' native language, were acoustically presented to passively listening adult native German speakers. ERPs showed a larger N400 effect for phonotactically legal compared to illegal pseudowords, suggesting stronger lexical activation mechanisms in phonotactically legal material. fNIRS revealed a left hemispheric network including fronto-temporal regions with greater response to phonotactically legal pseudowords than to illegal pseudowords. This confirms earlier hypotheses on a left hemispheric dominance of phonotactic processing most likely due to the fact that phonotactics is related to phonological processing and represents a segmental feature of language comprehension. These segmental linguistic properties of a stimulus are predominantly processed in the left hemisphere. Thus, our study provides first insights into temporal and topographical characteristics of phonotactic processing mechanisms in a passive listening task. Differential brain responses between known and unknown phonotactic rules thus supply evidence for an implicit use of phonotactic cues to guide lexical activation mechanisms.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Mental Processes/physiology , Phonetics , Spectroscopy, Near-Infrared , Adult , Auditory Cortex/blood supply , Brain Mapping , Cues , Electroencephalography , Female , Functional Laterality/physiology , Humans , Male , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...