Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.429
Filter
1.
World J Gastrointest Surg ; 16(6): 1883-1893, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983339

ABSTRACT

BACKGROUND: Gastric cancer is a common malignant tumor of the digestive system worldwide, and its early diagnosis is crucial to improve the survival rate of patients. Indocyanine green fluorescence imaging (ICG-FI), as a new imaging technology, has shown potential application prospects in oncology surgery. The meta-analysis to study the application value of ICG-FI in the diagnosis of gastric cancer sentinel lymph node biopsy is helpful to comprehensively evaluate the clinical effect of this technology and provide more reliable guidance for clinical practice. AIM: To assess the diagnostic efficacy of optical imaging in conjunction with indocyanine green (ICG)-guided sentinel lymph node (SLN) biopsy for gastric cancer. METHODS: Electronic databases such as PubMed, Embase, Medline, Web of Science, and the Cochrane Library were searched for prospective diagnostic tests of optical imaging combined with ICG-guided SLN biopsy. Stata 12.0 software was used for analysis by combining the "bivariable mixed effect model" with the "midas" command. The true positive value, false positive value, false negative value, true negative value, and other information from the included literature were extracted. A literature quality assessment map was drawn to describe the overall quality of the included literature. A forest plot was used for heterogeneity analysis, and P < 0.01 was considered to indicate statistical significance. A funnel plot was used to assess publication bias, and P < 0.1 was considered to indicate statistical significance. The summary receiver operating characteristic (SROC) curve was used to calculate the area under the curve (AUC) to determine the diagnostic accuracy. If there was interstudy heterogeneity (I 2 > 50%), meta-regression analysis and subgroup analysis were performed. RESULTS: Optical imaging involves two methods: Near-infrared (NIR) imaging and fluorescence imaging. A combination of optical imaging and ICG-guided SLN biopsy was useful for diagnosis. The positive likelihood ratio was 30.39 (95%CI: 0.92-1.00), the sensitivity was 0.95 (95%CI: 0.82-0.99), and the specificity was 1.00 (95%CI: 0.92-1.00). The negative likelihood ratio was 0.05 (95%CI: 0.01-0.20), the diagnostic odds ratio was 225.54 (95%CI: 88.81-572.77), and the SROC AUC was 1.00 (95%CI: The crucial values were sensitivity = 0.95 (95%CI: 0.82-0.99) and specificity = 1.00 (95%CI: 0.92-1.00). The Deeks method revealed that the "diagnostic odds ratio" funnel plot of SLN biopsy for gastric cancer was significantly asymmetrical (P = 0.01), suggesting significant publication bias. Further meta-subgroup analysis revealed that, compared with fluorescence imaging, NIR imaging had greater sensitivity (0.98 vs 0.73). Compared with optical imaging immediately after ICG injection, optical imaging after 20 minutes obtained greater sensitivity (0.98 vs 0.70). Compared with that of patients with an average SLN detection number < 4, the sensitivity of patients with a SLN detection number ≥ 4 was greater (0.96 vs 0.68). Compared with hematoxylin-eosin (HE) staining, immunohistochemical (+ HE) staining showed greater sensitivity (0.99 vs 0.84). Compared with subserous injection of ICG, submucosal injection achieved greater sensitivity (0.98 vs 0.40). Compared with 5 g/L ICG, 0.5 and 0.05 g/L ICG had greater sensitivity (0.98 vs 0.83), and cT1 stage had greater sensitivity (0.96 vs 0.72) than cT2 to cT3 clinical stage. Compared with that of patients ≤ 26, the sensitivity of patients > 26 was greater (0.96 vs 0.65). Compared with the literature published before 2010, the sensitivity of the literature published after 2010 was greater (0.97 vs 0.81), and the differences were statistically significant (all P < 0.05). CONCLUSION: For the diagnosis of stomach cancer, optical imaging in conjunction with ICG-guided SLN biopsy is a therapeutically viable approach, especially for early gastric cancer. The concentration of ICG used in the SLN biopsy of gastric cancer may be too high. Moreover, NIR imaging is better than fluorescence imaging and may obtain higher sensitivity.

2.
mBio ; : e0141124, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980040

ABSTRACT

Cyclic purine nucleotides are important signal transduction molecules across all domains of life. 3',5'-cyclic di-adenosine monophosphate (c-di-AMP) has roles in both prokaryotes and eukaryotes, while the signals that adjust intracellular c-di-AMP and the molecular machinery enabling a network-wide homeostatic response remain largely unknown. Here, we present evidence for an acetyl phosphate (AcP)-governed network responsible for c-di-AMP homeostasis through two distinct substrates, the diadenylate cyclase DNA integrity scanning protein (DisA) and its newly identified transcriptional repressor, DasR. Correspondingly, we found that AcP-induced acetylation exerts these regulatory actions by disrupting protein multimerization, thus impairing c-di-AMP synthesis via K66 acetylation of DisA. Conversely, the transcriptional inhibition of disA was relieved during DasR acetylation at K78. These findings establish a pivotal physiological role for AcP as a mediator to balance c-di-AMP homeostasis. Further studies revealed that acetylated DisA and DasR undergo conformational changes that play crucial roles in differentiation. Considering the broad distribution of AcP-induced acetylation in response to environmental stress, as well as the high conservation of the identified key sites, we propose that this unique regulation of c-di-AMP homeostasis may constitute a fundamental property of central circuits in Actinobacteria and thus the global control of cellular physiology.IMPORTANCESince the identification of c-di-AMP is required for bacterial growth and cellular physiology, a major challenge is the cell signals and stimuli that feed into the decision-making process of c-di-AMP concentration and how that information is integrated into the regulatory pathways. Using the bacterium Saccharopolyspora erythraea as a model, we established that AcP-dependent acetylation of the diadenylate cyclase DisA and its newly identified transcriptional repressor DasR is involved in coordinating environmental and intracellular signals, which are crucial for c-di-AMP homeostasis. Specifically, DisA acetylated at K66 directly inactivates its diadenylate cyclase activity, hence the production of c-di-AMP, whereas DasR acetylation at K78 leads to increased disA expression and c-di-AMP levels. Thus, AcP represents an essential molecular switch in c-di-AMP maintenance, responding to environmental changes and possibly hampering efficient development. Therefore, AcP-mediated posttranslational processes constitute a network beyond the usual and well-characterized synthetase/hydrolase governing c-di-AMP homeostasis.

3.
Acta Pharmacol Sin ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987389

ABSTRACT

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

4.
J Agric Food Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952111

ABSTRACT

Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.

5.
Huan Jing Ke Xue ; 45(6): 3153-3164, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897739

ABSTRACT

The accurate prediction of spatial variation trends in groundwater SO42- is of great significance for improving groundwater quality and regional groundwater management level. The multi-source spatio-temporal data such as land cover data, soil parameter data, digital elevation data, and groundwater pH value in the plain area of the Yarkant River Basin in 2011, 2014, 2017, and 2020 were used as characteristic variables to analyze their correlation with groundwater SO42- concentration. To enhance the prediction accuracy, the Bayesian optimization algorithm (BOA) was used to optimize the random forest regression (RFR). Based on the BOA-RFR model, the importance of the characteristic variables was analyzed, the prediction accuracy of the model was evaluated, and the groundwater SO42- prediction map was generated. The results showed that pH value, ground elevation (GE), and percentage of bare land (BAR) in the contribution area were important parameters influencing groundwater hydrochemical composition, which were significantly negatively correlated with groundwater SO42- concentration, and the importance of impact factors for predicting groundwater SO42- concentration exceeded 25 %. The geostatistical interpolation method was used as an auxiliary tool for the predictive modeling of spatial distribution. After adding auxiliary samples, the R2 of groundwater SO42- concentration prediction of the BOA-RFR model was greater than 0.96, and the maximum values of RMSE and MAE were reduced by 4.7 % and 23.8 %, respectively, compared with the minimum values of the model with fewer samples. The SO42- concentration prediction map showed that high SO42- groundwater was enriched in the northeast of the plain area of the Yarkand River Basin, an area that was expanding.

6.
J Am Chem Soc ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865282

ABSTRACT

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

8.
Arch Microbiol ; 206(7): 327, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922442

ABSTRACT

Lignocellulose biomass raw materials have a high value in energy conversion. Recently, there has been growing interest in using microorganisms to secret a series of enzymes for converting low-cost biomass into high-value products such as biofuels. We previously isolated a strain of Penicillium oxalicun 5-18 with promising lignocellulose-degrading capability. However, the mechanisms of lignocellulosic degradation of this fungus on various substrates are still unclear. In this study, we performed transcriptome-wide profiling and comparative analysis of strain 5-18 cultivated in liquid media with glucose (Glu), xylan (Xyl) or wheat bran (WB) as sole carbon source. In comparison to Glu culture, the number of differentially expressed genes (DEGs) induced by WB and Xyl was 4134 and 1484, respectively, with 1176 and 868 genes upregulated. Identified DEGs were enriched in many of the same pathways in both comparison groups (WB vs. Glu and Xly vs. Glu). Specially, 118 and 82 CAZyme coding genes were highly upregulated in WB and Xyl cultures, respectively. Some specific pathways including (Hemi)cellulose metabolic processes were enriched in both comparison groups. The high upregulation of these genes also confirmed the ability of strain 5-18 to degrade lignocellulose. Co-expression and co-upregulated of genes encoding CE and AA CAZy families, as well as other (hemi)cellulase revealed a complex degradation strategy in this strain. Our findings provide new insights into critical genes, key pathways and enzyme arsenal involved in the biomass degradation of P. oxalicum 5-18.


Subject(s)
Gene Expression Profiling , Lignin , Penicillium , Transcriptome , Xylans , Penicillium/genetics , Penicillium/metabolism , Lignin/metabolism , Xylans/metabolism , Biomass , Glucose/metabolism , Dietary Fiber/metabolism , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism
9.
Adipocyte ; 13(1): 2365211, 2024 12.
Article in English | MEDLINE | ID: mdl-38858810

ABSTRACT

microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.


Subject(s)
Adipogenesis , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , MicroRNAs , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , MicroRNAs/metabolism , Swine , Adipogenesis/genetics , Cells, Cultured , Signal Transduction , Adipocytes/cytology , Adipocytes/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism
10.
J Agric Food Chem ; 72(25): 14141-14151, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864686

ABSTRACT

The cotton aphid, Aphis gossypii, is a polyphagous pest that stunts host plant growth via direct feeding or transmitting plant virus. Due to the long-term application of insecticides, A. gossypii has developed different levels of resistance to numerous insecticides. We found that five field populations had evolved multiple resistances to neonicotinoids. To explore the resistance mechanism mediated by uridine diphosphate glycosyltransferases (UGTs), two upregulated UGT genes in these five strains, UGT350C3 and UGT344L7, were selected for functional analysis of their roles in neonicotinoid detoxification. Transgenic Drosophila bioassay results indicated that compared with the control lines, the UGT350C3 and UGT344L7 overexpression lines were more tolerant to thiamethoxam, imidacloprid, and dinotefuran. Knockdown of UGT350C3 and UGT344L7 significantly increased A. gossypii sensitivity to thiamethoxam, imidacloprid, and dinotefuran. Molecular docking analysis demonstrated that these neonicotinoids could bind to the active pockets of UGT350C3 and UGT344L7. This study provides functional evidence of neonicotinoid detoxification mediated by UGTs and will facilitate further work to identify strategies for preventing the development of neonicotinoid resistance in insects.


Subject(s)
Aphids , Glycosyltransferases , Insecticide Resistance , Insecticides , Neonicotinoids , Nitro Compounds , Animals , Aphids/genetics , Aphids/enzymology , Aphids/drug effects , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Neonicotinoids/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/metabolism , Insecticide Resistance/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Molecular Docking Simulation , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Thiamethoxam , Drosophila/genetics , Drosophila/enzymology , Drosophila/drug effects , Drosophila/metabolism , Guanidines
11.
IEEE Trans Cybern ; PP2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917292

ABSTRACT

The tracking control of redundant manipulators plays a crucial role in robotics research and generally requires accurate knowledge of models of redundant manipulators. When the model information of a redundant manipulator is unknown, the trajectory-tracking control with model-based methods may fail to complete a given task. To this end, this article proposes a data-driven neural dynamics-based model predictive control (NDMPC) algorithm, which consists of a model predictive control (MPC) scheme, a neural dynamics (ND) solver, and a discrete-time Jacobian matrix (DTJM) updating law. With the help of the DTJM updating law, the future output of the model-unknown redundant manipulator is predicted, and the MPC scheme for trajectory tracking is constructed. The ND solver is designed to solve the MPC scheme to generate control input driving the redundant manipulator. The convergence of the proposed data-driven NDMPC algorithm is proven via theoretical analyses, and its feasibility and superiority are demonstrated via simulations and experiments on a redundant manipulator. Under the drive of the proposed algorithm, the redundant manipulator successfully carries out the trajectory-tracking task without the need for its kinematics model.

12.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928365

ABSTRACT

Plant genomics and breeding is one among the several highly regarded disciplines in today's field of biological sciences [...].


Subject(s)
Genome, Plant , Genomics , Plant Breeding , Plants , Plant Breeding/methods , Genomics/methods , Plants/genetics
13.
Cells ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891117

ABSTRACT

Fibroblast growth factor 5 (FGF5) plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four FGF5-edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep. The density of fine wool in GE sheep was markedly increased, and the proportion of fine wool with a diameter of 14.4-20.0 µm was significantly higher. The proliferation signal in the skin of gene-edited (GE) sheep was stronger than in wild-type (WT) sheep. FGF5 editing decreased cortisol concentration in the skin, further activated the activity of antioxidant enzymes such as Glutathione peroxidase (GSH-Px), and regulated the expression of Wnt signaling pathways containing Wnt agonists (Rspondins, Rspos) and antagonists (Notum) in hair regeneration. We suggest that FGF5 not only mediates the activation of antioxidant pathways by cortisol, which constitutes a highly coordinated microenvironment in hair follicle cells, but also influences key signals of the Wnt pathway to regulate secondary hair follicle (SHF) development. Overall, our findings here demonstrate that FGF5 plays a significant role in regulating SHF growth in sheep and potentially serves as a molecular marker of fine wool growth in sheep breeding.


Subject(s)
Fibroblast Growth Factor 5 , Glutathione Peroxidase , Hair Follicle , Wnt Signaling Pathway , Wool , Animals , Fibroblast Growth Factor 5/metabolism , Fibroblast Growth Factor 5/genetics , Sheep , Wool/metabolism , Hair Follicle/metabolism , Hair Follicle/growth & development , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Gene Editing , Hydrocortisone/metabolism , Cell Proliferation , CRISPR-Cas Systems/genetics
14.
NPJ Biofilms Microbiomes ; 10(1): 51, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902226

ABSTRACT

Bacteria induced metamorphosis observed in nearly all marine invertebrates. However, the mechanism of bacteria regulating the larvae-juvenile metamorphosis remains unknown. Here, we test the hypothesis that c-di-GMP, a ubiquitous bacterial second-messenger molecule, directly triggers the mollusc Mytilus coruscus larval metamorphosis via the stimulator of interferon genes (STING) receptor. We determined that the deletion of c-di-GMP synthesis genes resulted in reduced c-di-GMP levels and biofilm-inducing activity on larval metamorphosis, accompanied by alterations in extracellular polymeric substances. Additionally, c-di-GMP extracted from tested varying marine bacteria all exhibited inducing activity on larval metamorphosis. Simultaneously, through pharmacological and molecular experiments, we demonstrated that M. coruscus STING (McSTING) participates in larval metamorphosis by binding with c-di-GMP. Our findings reveal that new role of bacterial c-di-GMP that triggers mussel larval metamorphosis transition, and extend knowledge in the interaction of bacteria and host development in marine ecosystems.


Subject(s)
Biofilms , Cyclic GMP , Larva , Metamorphosis, Biological , Mytilus , Animals , Larva/microbiology , Larva/growth & development , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Biofilms/growth & development , Mytilus/microbiology , Mytilus/growth & development , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/growth & development , Membrane Proteins/genetics , Membrane Proteins/metabolism
15.
J Agric Food Chem ; 72(27): 15334-15344, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38916549

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive. Here, we determined that DEHP exposure induced a compromised duodenum structure, which was concomitant with mitochondrial structural injury of epithelial cells. Importantly, DEHP exposure caused duodenum inflammatory epithelial cell damage and strong inflammatory response accompanied by activating the TLR4/MyD88/NF-κB signaling pathway. Mechanistically, DEHP exposure directly inhibits the expression of AQP1 and thus leads to an inflammatory response, ultimately disrupting duodenum integrity and barrier function. Collectively, our findings uncover the role of AQP1 in phthalate-induced intestinal disorders, and AQP1 could be a promising therapeutic approach for treating patients with intestinal disorders or inflammatory diseases.


Subject(s)
Aquaporin 1 , Intestinal Mucosa , Animals , Aquaporin 1/genetics , Aquaporin 1/metabolism , Mice , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/genetics , Inflammation/chemically induced , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Diethylhexyl Phthalate/toxicity , Phthalic Acids , Signal Transduction/drug effects
16.
Arch Pharm (Weinheim) ; : e2400249, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838334

ABSTRACT

It is generally believed that the main influencing factors of plant metabolism are genetic and environmental factors. However, the transformation and catalysis of metabolic intermediates by endophytic fungi have become a new factor and resource attracting attention in recent years. There are over 2000 precious plant species in the Astragalus genus. In the past decade, at least 303 high-value metabolites have been isolated from the Astragalus medicinal plants, including 124 saponins, 150 flavonoids, two alkaloids, six sterols, and over 20 other types of compounds. These medicinal plants contain abundant endophytic fungi with unique functions, and nearly 600 endophytic fungi with known identity have been detected, but only about 35 strains belonging to 13 genera have been isolated. Among them, at least four strains affiliated to Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae, and Camarosporium laburnicola have demonstrated the ability to biotransform four saponin compounds from the Astragalus genus, resulting in the production of 66 new compounds, which have significantly enhanced our understanding of the formation of metabolites in plants of the Astragalus genus. They provide a scientific basis for improving the cultivation quality of Astragalus plants through the modification of dominant fungal endophytes or reshaping the endophytic fungal community. Additionally, they open up new avenues for the discovery of specialized, green, efficient, and sustainable biotransformation pathways for complex pharmaceutical intermediates.

17.
Integr Zool ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872346

ABSTRACT

Identifying climatic niche shift and its influencing factors is of great significance in predicting the risk of alien species invasions accurately. Previous studies have attempted to identify the factors related to the niche shift of alien species in their invaded ranges, including changes in introduction history, selection of exact climate predictors, and anthropogenic factors. However, the effect of species-level traits on niche shift remains largely unexplored, especially those reflecting the species' adaptation ability to new environments. Based on the occurrence data of 117 successful alien bird invaders at a global scale, their native and invaded climatic niches were compared, and the potential influencing factors were identified. Our results show the niche overlap was low, with more than 75% of the non-native birds representing climatic niche shift (i.e. >10% niche expansion). In addition, 85% of the species showed a large proportion (mean ± SD, 39% ± 21%) of niche unfilling. Relative brain size (RBS) after accounting for body size had no direct effect on niche shift, but path analysis showed that RBS had an indirect effect on niche shift by acting on behavioral innovation primarily on technical innovation rather than consumer innovation. These findings suggested the incorporation of species' important behavioral adaptation traits may be promising to develop future prediction frameworks of biological invasion risk in response to the continued global change.

18.
Front Pharmacol ; 15: 1302134, 2024.
Article in English | MEDLINE | ID: mdl-38881877

ABSTRACT

Background: The role of RNA-binding fox one homolog 2 (RBFOX2) in the progression of multiple tumors is increasingly supported by evidence. However, the unclearness pertaining to the expression of RBFOX2, its prognostic potential, and its correlation with the tumor microenvironment (TME) in pan-cancer persists. This study aims to comprehensively investigate the immunological prognostic value of RBFOX2. Methods: The Cancer Genome Atlas Gene Expression Omnibus Genotype-Tissue Expression (GTEx), TIMER2.0, Kaplan-Meier (K-M) Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were utilized for a systematic analysis of RBFOX2. This analysis included studying its expression, prognostic value, DNA methylation, enrichment analysis, immune infiltration cells, and immune-related genes. Additionally, qRT-PCR, CCK-8, colony formation, transwell assays, and immunohistochemistry were employed to analyze the expression and biological function of RBFOX2 in liver cancer. Results: Variations in RBFOX2 expression have been observed across diverse tumors and have been identified as indicators of unfavorable prognosis. It is closely linked to immune infiltration cells, immune checkpoints, chemokines, and chemokine receptors in the TME. Higher levels of RBFOX2 have been significantly associated with low response and poor prognosis in patients with non-small cell lung cancer (NSCLC) and melanoma who receive immunotherapy. Furthermore, the DNA methylation of RBFOX2 varies across different types of cancer and has shown better prognosis in patients with BLCA, BRCA, CESC, COAD, DLBC, HNSC, LAML, LGG, LUAD, PAAD, SKCM and THYM. Interestingly, RBFOX2 expression was found to be lower in hepatocellular carcinoma (HCC) patients' tumor tissues compared to their paired adjacent tissues. In vitro studies have shown that knockdown of RBFOX2 significantly promotes the growth and metastasis of liver cancer cells. Conclusion: This study investigates the correlation between DNA methylation, prognostic value, and immune cell infiltration with the expression of RBFOX2 in pan-cancer and indicates its potential role to inhibit metastasis of liver cancer.

19.
Opt Express ; 32(11): 20153-20165, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859132

ABSTRACT

We propose and demonstrate a high-speed directly modulated laser based on a hybrid deformed-square-FP coupled cavity (DFC), aiming for a compact-size low-cost light source in next-generation optical communication systems. The deformed square microcavity is directly connected to the FP cavity and utilized as a wavelength-sensitive reflector with a comb-like and narrow-peak reflection spectrum for selecting the lasing mode, which can greatly improve the single-mode yield of the laser and the quality (Q) factor of the coupled mode. By optimizing the device design and operating condition, the modulation bandwidth of the DFC laser can be enhanced due to the intracavity-mode photon-photon resonance effect. Our experimental results show an enhancement of 3-dB modulation bandwidth from 19.3 GHz to 30 GHz and a clear eye diagram at a modulation rate of 25 Gbps.

20.
J Agric Food Chem ; 72(23): 13382-13392, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814005

ABSTRACT

Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/ß-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.


Subject(s)
Cadmium , Chickens , Isothiocyanates , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sulfoxides , Thymus Gland , Animals , Isothiocyanates/pharmacology , Cadmium/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Thymus Gland/drug effects , Thymus Gland/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Signal Transduction/drug effects , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...