Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 120(11): 3335-3346, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37584190

ABSTRACT

The development of efficient processes for the production of oncolytic viruses (OV) plays a crucial role regarding the clinical success of virotherapy. Although many different OV platforms are currently under investigation, manufacturing of such viruses still mainly relies on static adherent cell cultures, which bear many challenges, particularly for fusogenic OVs. Availability of GMP-compliant continuous cell lines is limited, further complicating the development of commercially viable products. BHK21, AGE1. CR and HEK293 cells were previously identified as possible cell substrates for the recombinant vesicular stomatitis virus (rVSV)-based fusogenic OV, rVSV-NDV. Now, another promising cell substrate was identified, the CCX.E10 cell line, developed by Nuvonis Technologies. This suspension cell line is considered non-GMO as no foreign genes or viral sequences were used for its development. The CCX.E10 cells were thus thoroughly investigated as a potential candidate for OV production. Cell growth in the chemically defined medium in suspension resulted in concentrations up to 8.9 × 106 cells/mL with a doubling time of 26.6 h in batch mode. Cultivation and production of rVSV-NDV, was demonstrated successfully for various cultivation systems (ambr15, shake flask, stirred tank reactor, and orbitally shaken bioreactor) at vessel scales ranging from 15 mL to 10 L. High infectious virus titers of up to 4.2 × 108 TCID50 /mL were reached in orbitally shaken bioreactors and stirred tank reactors in batch mode, respectively. Our results suggest that CCX.E10 cells are a very promising option for industrial production of OVs, particularly for fusogenic VSV-based constructs.

2.
Biotechnol Bioeng ; 120(9): 2639-2657, 2023 09.
Article in English | MEDLINE | ID: mdl-36779302

ABSTRACT

We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.


Subject(s)
Oncolytic Viruses , Animals , Oncolytic Viruses/genetics , Cell Culture Techniques , Bioreactors , Cell Line , Vesiculovirus/genetics , Virus Cultivation
3.
J Microbiol Biotechnol ; 30(10): 1592-1596, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32699196

ABSTRACT

The aerobic growth and metabolic performance of Escherichia coli strains BL21 and W3110 were studied when the Vitreoscilla hemoglobin (VHb) was constitutively expressed in the chromosome. When VHb was expressed, acetate production decreased in both strains and was nearly eliminated in BL21. Transcriptional levels of the glyoxylate shunt genes decreased in both strains when VHb was expressed. However, higher transcription of the α-ketoglutarate dehydrogenase genes were observed for W3110, while for BL21 transcription levels decreased. VHb expression reduced the transcription of the cytochrome bo3 genes only in BL21. These results are useful for better selecting a production host.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Truncated Hemoglobins/genetics , Truncated Hemoglobins/metabolism , DNA-Binding Proteins , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hemeproteins , Rec A Recombinases , Transcriptome
4.
Biotechnol Bioeng ; 116(10): 2514-2525, 2019 10.
Article in English | MEDLINE | ID: mdl-31232477

ABSTRACT

A pUC-derived replicon inducible by oxygen limitation was designed and tested in fed-batch cultures of Escherichia coli. It included the addition of a second inducible copy of rnaII, the positive replication control element. The rnaII gene was expressed from Ptrc and cloned into pUC18 to test the hypothesis that the ratio of the positive control molecule RNAII to the negative control element, RNAI, was the determinant of plasmid copy number per chromosome (PCN). The construct was evaluated in several E. coli strains. Evaluations of the RNAII/RNAI ratio, PCN and plasmid yield normalized to biomass (YpDNA/X ) were performed and the initial hypothesis was probed. Furthermore, in high cell-density cultures in shake flasks, an outstanding amount of 126 mg/L of plasmid was produced. The microaerobically inducible plasmid was obtained by cloning the rnaII gene under the control of the oxygen-responsive Vitreoscilla stercoraria hemoglobin promoter. For this plasmid, but not for pUC18, the RNAII/RNAI ratio, PCN and YpDNA/X efficiently increased after the shift to the microaerobic regime in fed-batch cultures in a 1 L bioreactor. The YpDNA/X of the inducible plasmid reached 12 mg/g at the end of the fed-batch but the original pUC18 only reached ca. 6 mg/g. The proposed plasmid is a valuable alternative for the operation and scale-up of plasmid DNA production processes in which mass transfer limitations will not represent an issue.


Subject(s)
DNA, Bacterial , Escherichia coli , Plasmids , Replicon , Vitreoscilla/genetics , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Plasmids/genetics , Plasmids/isolation & purification , Plasmids/metabolism , Vitreoscilla/metabolism
5.
Bioprocess Biosyst Eng ; 42(9): 1457-1466, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31079222

ABSTRACT

Escherichia coli strains W3110 and BL21 were engineered for the production of plasmid DNA (pDNA) under aerobic and transitions to microaerobic conditions. The gene coding for recombinase A (recA) was deleted in both strains. In addition, the Vitreoscilla hemoglobin (VHb) gene (vgb) was chromosomally inserted and constitutively expressed in each E. coli recA mutant and wild type. The recA inactivation increased the supercoiled pDNA fraction (SCF) in both strains, while VHb expression improved the pDNA production in W3110, but not in BL21. Therefore, a codon-optimized version of vgb was inserted in strain BL21recA-, which, together with W3110recA-vgb+, was tested in cultures with shifts from aerobic to oxygen-limited regimes. VHb expression lowered the accumulation of fermentative by-products in both strains. VHb-expressing cells displayed higher oxidative activity as indicated by the Redox Sensor Green fluorescence, which was more intense in BL21 than in W3110. Furthermore, VHb expression did not change pDNA production in W3110, but decreased it in BL21. These results are useful for understanding the physiological effects of VHb expression in two industrially relevant E. coli strains, and for the selection of a host for pDNA production.


Subject(s)
Escherichia coli/metabolism , Microorganisms, Genetically-Modified/metabolism , Plasmids/biosynthesis , Aerobiosis , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Microorganisms, Genetically-Modified/genetics , Plasmids/genetics , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Truncated Hemoglobins/biosynthesis , Truncated Hemoglobins/genetics
6.
J Biol Eng ; 11: 39, 2017.
Article in English | MEDLINE | ID: mdl-29158775

ABSTRACT

Oxygen-responsive promoters can be useful for synthetic biology applications, however, information on their characteristics is still limited. Here, we characterized a group of heterologous microaerobic globin promoters in Escherichia coli. Globin promoters from Bacillus subtilis, Campylobacter jejuni, Deinococcus radiodurans, Streptomyces coelicolor, Salmonella typhi and Vitreoscilla stercoraria were used to express the FMN-binding fluorescent protein (FbFP), which is a non-oxygen dependent marker. FbFP fluorescence was monitored online in cultures at maximum oxygen transfer capacities (OTRmax) of 7 and 11 mmol L-1 h-1. Different FbFP fluorescence intensities were observed and the OTRmax affected the induction level and specific fluorescence emission rate (the product of the specific fluorescence intensity multiplied by the specific growth rate) of all promoters. The promoter from S. typhi displayed the highest fluorescence emission yields (the quotient of the fluorescence intensity divided by the scattered light intensity at every time-point) and rate, and together with the promoters from D. radiodurans and S. coelicolor, the highest induction ratios. These results show the potential of diverse heterologous globin promoters for oxygen-limited processes using E. coli.

7.
BMC Biotechnol ; 17(1): 60, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676110

ABSTRACT

BACKGROUND: Dissolved oxygen tension (DOT) is hardly constant and homogenously distributed in a bioreactor, which can have a negative impact in the metabolism and product synthesis. However, the effects of DOT on plasmid DNA (pDNA) production and quality have not been thoroughly investigated. In the present study, the effects of aerobic (DOT ≥30% air sat.), microaerobic (constant DOT = 3% air sat.) and oscillatory DOT (from 0 to 100% air sat.) conditions on pDNA production, quality and host performance were characterized. RESULTS: Microaerobic conditions had little effect on pDNA production, supercoiled fraction and sequence fidelity. By contrast, oscillatory DOT caused a 22% decrease in pDNA production compared with aerobic cultures. Although in aerobic cultures the pDNA supercoiled fraction was 98%, it decreased to 80% under heterogeneous DOT conditions. The different oxygen availabilities had no effect on the fidelity of the produced pDNA. The estimated metabolic fluxes indicated substantial differences at the level of the pentose phosphate pathway and TCA cycle under different conditions. Cyclic changes in fermentative pathway fluxes, as well as fast shifts in the fluxes through cytochromes, were also estimated. Model-based genetic modifications that can potentially improve the process performance are suggested. CONCLUSIONS: DOT heterogeneities strongly affected cell performance, pDNA production and topology. This should be considered when operating or scaling-up a bioreactor with deficient mixing. Constant microaerobic conditions affected the bacterial metabolism but not the amount or quality of pDNA. Therefore, pDNA production in microaerobic cultures may be an alternative for bioreactor operation at higher oxygen transfer rates.


Subject(s)
DNA, Bacterial/biosynthesis , DNA, Bacterial/genetics , Escherichia coli/physiology , Oxygen/metabolism , Plasmids/biosynthesis , Plasmids/genetics , Biological Availability , Gene Expression Regulation, Bacterial/genetics , Plasmids/isolation & purification
8.
ACS Synth Biol ; 6(2): 344-356, 2017 02 17.
Article in English | MEDLINE | ID: mdl-27715021

ABSTRACT

Oxygen limitation can be used as a simple environmental inducer for the expression of target genes. However, there is scarce information on the characteristics of microaerobic promoters potentially useful for cell engineering and synthetic biology applications. Here, we characterized the Vitreoscilla hemoglobin promoter (Pvgb) and a set of microaerobic endogenous promoters in Escherichia coli. Oxygen-limited cultures at different maximum oxygen transfer rates were carried out. The FMN-binding fluorescent protein (FbFP), which is a nonoxygen dependent marker protein, was used as a reporter. Fluorescence and fluorescence emission rates under oxygen-limited conditions were the highest when FbFP was under transcriptional control of PadhE, Ppfl and Pvgb. The lengths of the E. coli endogenous promoters were shortened by 60%, maintaining their key regulatory elements. This resulted in improved promoter activity in most cases, particularly for PadhE, Ppfl and PnarK. Selected promoters were also evaluated using an engineered E. coli strain expressing Vitreoscilla hemoglobin (VHb). The presence of the VHb resulted in a better repression using these promoters under aerobic conditions, and increased the specific growth and fluorescence emission rates under oxygen-limited conditions. These results are useful for the selection of promoters for specific applications and for the design of modified artificial promoters.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Oxygen/metabolism , Promoter Regions, Genetic/genetics , Bacterial Proteins/genetics , Cell Engineering/methods , Escherichia coli Proteins/genetics , Fluorescence , Gene Expression Regulation, Bacterial/genetics , Luminescent Proteins/genetics , Synthetic Biology/methods , Transcription, Genetic/genetics , Truncated Hemoglobins/genetics , Vitreoscilla/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...