Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Des Devel Ther ; 18: 2653-2679, 2024.
Article in English | MEDLINE | ID: mdl-38974119

ABSTRACT

Purpose: Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods: After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results: In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion: The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.


Subject(s)
Mitogen-Activated Protein Kinase 10 , Tumor Suppressor Protein p53 , Ubiquitin-Specific Peptidase 7 , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/chemistry , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/chemistry , Humans , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Mitogen-Activated Protein Kinase 10/chemistry , Sulfones/chemistry , Sulfones/pharmacology , Molecular Structure , Solubility , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Acrylamides/chemistry , Acrylamides/pharmacology , Acrylates/chemistry , Acrylates/pharmacology , Protein Binding
2.
Anal Chem ; 96(6): 2666-2675, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38297457

ABSTRACT

Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.


Subject(s)
Amino Acids , Isoleucine , Amino Acids/analysis , Chromatography, High Pressure Liquid/methods , Stereoisomerism , Leucine , Liquid Chromatography-Mass Spectrometry , Threonine , Ions
3.
Nat Microbiol ; 9(1): 200-213, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110697

ABSTRACT

Antagonistic bacterial interactions often rely on antimicrobial bacteriocins, which attack only a narrow range of target bacteria. However, antimicrobials with broader activity may be advantageous. Here we identify an antimicrobial called epifadin, which is produced by nasal Staphylococcus epidermidis IVK83. It has an unprecedented architecture consisting of a non-ribosomally synthesized peptide, a polyketide component and a terminal modified amino acid moiety. Epifadin combines a wide antimicrobial target spectrum with a short life span of only a few hours. It is highly unstable under in vivo-like conditions, potentially as a means to limit collateral damage of bacterial mutualists. However, Staphylococcus aureus is eliminated by epifadin-producing S. epidermidis during co-cultivation in vitro and in vivo, indicating that epifadin-producing commensals could help prevent nasal S. aureus carriage. These insights into a microbiome-derived, previously unknown antimicrobial compound class suggest that limiting the half-life of an antimicrobial may help to balance its beneficial and detrimental activities.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Humans , Staphylococcus aureus , Antimicrobial Peptides , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/metabolism
4.
RSC Med Chem ; 13(12): 1575-1586, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36561072

ABSTRACT

The cellular tumor antigen p53 is a key component in cell cycle control. The mutation Y220C heavily destabilizes the protein thermally but yields a druggable crevice. We have screened the diversity-optimized halogen-enriched fragment library against T-p53C-Y220C with STD-NMR and DSF to identify hits, which we validated by 1H,15N-HSQC NMR. We could identify four hits binding in the Y220C cleft, one hit binding covalently and four hits binding to an uncharacterized binding site. Compound 1151 could be crystallized showing a flip of C220 and thus opening subsite 3. Additionally, 4482 was identified to alkylate cysteines. Data shows that the diversity-optimized HEFLib leads to multiple diverse hits. The identified scaffolds can be used to further optimize interactions with T-p53C-Y220C and increase thermal stability.

5.
J Chromatogr A ; 1676: 463251, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35752149

ABSTRACT

To find the best performing column for the analysis of protein-based biopharmaceuticals is a significant challenge as meanwhile numerous modern columns with distinct stationary phase morphologies are available for reversed-phase liquid chromatography. Especially when besides morphology also several other column factors are different, it is hard to decide about the best performing column a priori. To cope with this problem, in the present work 13 different reversed-phase columns dedicated for protein separations were systematically tested by the gradient kinetic plot method. A comprehensive comparison of columns with different morphologies (monolithic, fully porous and superficially porous particle columns), particle sizes and pore diameters as well as column length was performed. Specific consideration was also given to various monolithic columns which recently shifted a bit out of the prime focus in the scientific literature. The test proteins ranged from small proteins starting from 12 kDa, to medium sized proteins (antibody subunits obtained after IdeS-digestion and disulphide reduction) and an intact antibody. The small proteins cytochrome c, lysozyme and ß-lactoglobulin could be analysed with similar performance by the best columns of all three column morphologies while for the antibody fragments specific fully porous and superficially porous particle columns were superior. A 450 Å 3,5 µm superficially porous particle column showed the best performance for the intact antibody while a 1.7 µm fully porous particle column with 300 Å showed equivalent performance to the best superficially porous column with thin shell and 400 Å pore size for proteins between 12 and 25 kDa. While the majority of the columns had C4 bonding chemistry, the silica monolith with C18 bonding and 300 Å mesopore size approximated the best performing particle columns and outperformed a C4 300 Å wide-pore monolith. The current work can support the preferred choice for the most suitable reversed-phase column for protein separations.


Subject(s)
Biological Products , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Kinetics , Particle Size , Porosity , Proteins/chemistry
6.
J Chromatogr A ; 1636: 461786, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33326927

ABSTRACT

The profile of charge variants represents an important critical quality attribute of protein-based biopharmaceuticals, in particular of monoclonal antibodies, and must therefore becontrolled. In this work, 2D-LC methods for charge variant analysis were developed using a strong cation-exchange chromatography (SCX) as first dimension (1D) separation. Non-porous SCX (3 µm) particle columns and different mobile phases were evaluated using a test mixture of some standard proteins of different size and pI (comprising myoglobin, bovine serum albumin, cytochrome c, lysozyme and ß-lactoglobulin) and two monoclonal IgG1 antibodies (NIST mAb and Secukinumab). The most promising 1D eluent for SCX was a salt-mediated pH-gradient system using a ternary mobile phase system with 2-(N-morpholino)ethanesulfonic acid, 1,3-diamino-2-propanol and sodium chloride. For the second dimension (2D), a desalting reversed-phase liquid chromatography (RP-LC) was chosen to enable the hyphenation of the charge variant separation with mass spectrometric (MS) detection. While for intact mAbs the 2D just served for desalting without additional selectivity, the 2D contributed some orthogonal selectivity for the mAb fragment separation. Various core-shell and monolithic columns were tested and variables such as gradient time and flow rate systematically optimized. Unexpectedly, a C4 400 Å column (3.4 µm diameter with 0.2 µm porous shell) provided higher peak capacities compared to the same 1000 Å column (2.7 µm diameter with 0.5 µm porous shell). A thinner shell appeared to be more advantageous than wider pores under high flow regime. An ultra-fast RP-LC method with a run time of one minute was developed using trifluoroacetic acid which was later replaced by formic acid as additive for better MS compatibility. The successful hyphenation of the two orthogonal separation modes, SCX and RP-LC, could be demonstrated in the multiple heart-cutting and the full comprehensive mode. MS analysis using a high-resolution quadrupole time-of-flight instrument enabled to identify different glycoforms and some major charge variants of the antibody at the intact protein level as well as on the subunit level (Fc/2, Lc, Fd') in a middle-up approach by 2D-LC-ESI-MS analysis.


Subject(s)
Biological Products/analysis , Chromatography, Reverse-Phase/methods , Proteins/analysis , Spectrometry, Mass, Electrospray Ionization , Antibodies, Monoclonal, Humanized/analysis , Chromatography, High Pressure Liquid , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...