Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 17605, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266453

ABSTRACT

Many cell-based therapies are challenged by the poor localization of introduced cells and the use of biomaterial scaffolds with questionable biocompatibility or bio-functionality. Endothelial progenitor cells (EPCs), a popular cell type used in cell-based therapies due to their robust angiogenic potential, are limited in their therapeutic capacity to develop into mature vasculature. Here, we demonstrate a joint delivery of human-derived endothelial progenitor cells (EPC) and smooth muscle cells (SMC) as a scaffold-free, bi-level cell sheet platform to improve ventricular remodeling and function in an athymic rat model of myocardial infarction. The transplanted bi-level cell sheet on the ischemic heart provides a biomimetic microenvironment and improved cell-cell communication, enhancing cell engraftment and angiogenesis, thereby improving ventricular remodeling. Notably, the increased density of vessel-like structures and upregulation of biological adhesion and vasculature developmental genes, such as Cxcl12 and Notch3, particularly in the ischemic border zone myocardium, were observed following cell sheet transplantation. We provide compelling evidence that this SMC-EPC bi-level cell sheet construct can be a promising therapy to repair ischemic cardiomyopathy.


Subject(s)
Myocardial Infarction , Ventricular Remodeling , Animals , Humans , Rats , Biocompatible Materials , Cells, Cultured , Myocardial Infarction/metabolism , Neovascularization, Physiologic , Stem Cell Transplantation , Stem Cells/metabolism
2.
Genes (Basel) ; 11(7)2020 07 14.
Article in English | MEDLINE | ID: mdl-32674273

ABSTRACT

The genetic mechanisms underlying aortic stenosis (AS) and aortic insufficiency (AI) disease progression remain unclear. We hypothesized that normal aortic valves and those with AS or AI all exhibit unique transcriptional profiles. Normal control (NC) aortic valves were collected from non-matched donor hearts that were otherwise acceptable for transplantation (n = 5). Valves with AS or AI (n = 5, each) were collected from patients undergoing surgical aortic valve replacement. High-throughput sequencing of total RNA revealed 6438 differentially expressed genes (DEGs) for AS vs. NC, 4994 DEGs for AI vs. NC, and 2771 DEGs for AS vs. AI. Among 21 DEGs of interest, APCDD1L, CDH6, COL10A1, HBB, IBSP, KRT14, PLEKHS1, PRSS35, and TDO2 were upregulated in both AS and AI compared to NC, whereas ALDH1L1, EPHB1, GPX3, HIF3A, and KCNT1 were downregulated in both AS and AI (p < 0.05). COL11A1, H19, HIF1A, KCNJ6, PRND, and SPP1 were upregulated only in AS, and NPY was downregulated only in AS (p < 0.05). The functional network for AS clustered around ion regulation, immune regulation, and lipid homeostasis, and that for AI clustered around ERK1/2 regulation. Overall, we report transcriptional profiling data for normal human aortic valves from non-matched donor hearts that were acceptable for transplantation and demonstrated that valves with AS and AI possess unique genetic signatures. These data create a roadmap for the development of novel therapeutics to treat AS and AI.


Subject(s)
Aortic Valve Stenosis/genetics , Aortic Valve/metabolism , Gene Regulatory Networks/genetics , Transcription, Genetic , Adult , Aged , Aortic Valve/pathology , Aortic Valve Disease/genetics , Aortic Valve Disease/pathology , Aortic Valve Stenosis/pathology , Calcinosis/genetics , Calcinosis/pathology , Constriction, Pathologic/genetics , Constriction, Pathologic/pathology , Female , Gene Expression Regulation/genetics , Heart Transplantation/adverse effects , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , RNA-Seq
3.
Microb Biotechnol ; 13(6): 1780-1792, 2020 11.
Article in English | MEDLINE | ID: mdl-32476224

ABSTRACT

The cyanobacterium Synechococcus elongatus (SE) has been shown to rescue ischaemic heart muscle after myocardial infarction by photosynthetic oxygen production. Here, we investigated SE toxicity and hypothesized that systemic SE exposure does not elicit a significant immune response in rats. Wistar rats intravenously received SE (n = 12), sterile saline (n = 12) or E. coli lipopolysaccharide (LPS, n = 4), and a subset (8 SE, 8 saline) received a repeat injection 4 weeks later. At baseline, 4 h, 24 h, 48 h, 8 days and 4 weeks after injection, clinical assessments, blood cultures, blood counts, lymphocyte phenotypes, liver function tests, proinflammatory cytokines and immunoglobulins were assessed. Across all metrics, SE rats responded comparably to saline controls, displaying no clinically significant immune response. As expected, LPS rats exhibited severe immunological responses. Systemic SE administration does not induce sepsis or toxicity in rats, thereby supporting the safety of cyanobacteria-mammalian symbiotic therapeutics using this organism.


Subject(s)
Escherichia coli , Synechococcus , Animals , Photosynthesis , Rats , Rats, Wistar
4.
Cytokine ; 127: 154974, 2020 03.
Article in English | MEDLINE | ID: mdl-31978642

ABSTRACT

Although ischemic heart disease is the leading cause of death worldwide, mainstay treatments ultimately fail because they do not adequately address disease pathophysiology. Restoring the microvascular perfusion deficit remains a significant unmet need and may be addressed via delivery of pro-angiogenic cytokines. The therapeutic effect of cytokines can be enhanced by encapsulation within hydrogels, but current hydrogels do not offer sufficient clinical translatability due to unfavorable viscoelastic mechanical behavior which directly impacts the ability for minimally-invasive catheter delivery. In this report, we examine the therapeutic implications of dual-stage cytokine release from a novel, highly shear-thinning biocompatible catheter-deliverable hydrogel. We chose to encapsulate two protein-engineered cytokines, namely dimeric fragment of hepatocyte growth factor (HGFdf) and engineered stromal cell-derived factor 1α (ESA), which target distinct disease pathways. The controlled release of HGFdf and ESA from separate phases of the hyaluronic acid-based hydrogel allows extended and pronounced beneficial effects due to the precise timing of release. We evaluated the therapeutic efficacy of this treatment strategy in a small animal model of myocardial ischemia and observed a significant benefit in biological and functional parameters. Given the encouraging results from the small animal experiment, we translated this treatment to a large animal preclinical model and observed a reduction in scar size, indicating this strategy could serve as a potential adjunct therapy for the millions of people suffering from ischemic heart disease.


Subject(s)
Hydrogels/administration & dosage , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardium/metabolism , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Catheters , Cells, Cultured , Disease Models, Animal , Hepatocyte Growth Factor/metabolism , Humans , Hyaluronic Acid/administration & dosage , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Myocardium/pathology , Rats
5.
Nat Biomed Eng ; 3(8): 611-620, 2019 08.
Article in English | MEDLINE | ID: mdl-31391596

ABSTRACT

Post-operative adhesions form as a result of normal wound healing processes following any type of surgery. In cardiac surgery, pericardial adhesions are particularly problematic during reoperations, as surgeons must release the adhesions from the surface of the heart before the intended procedure can begin, thereby substantially lengthening operation times and introducing risks of haemorrhage and injury to the heart and lungs during sternal re-entry and cardiac dissection. Here we show that a dynamically crosslinked supramolecular polymer-nanoparticle hydrogel, with viscoelastic and flow properties that enable spraying onto tissue as well as robust tissue adherence and local retention in vivo for two weeks, reduces the formation of pericardial adhesions. In a rat model of severe pericardial adhesions, the hydrogel markedly reduced the severity of the adhesions, whereas commercial adhesion barriers (including Seprafilm and Interceed) did not. The hydrogels also reduced the severity of cardiac adhesions (relative to untreated animals) in a clinically relevant cardiopulmonary-bypass model in sheep. This viscoelastic supramolecular polymeric hydrogel represents a promising clinical solution for the prevention of post-operative pericardial adhesions.


Subject(s)
Cardiac Surgical Procedures/methods , Hydrogels/chemistry , Pericardium/surgery , Polymers/chemistry , Tissue Adhesions , Animals , Cellulose, Oxidized , Hyaluronic Acid , Hydrogels/therapeutic use , Male , Models, Animal , Nanoparticles , Polymers/therapeutic use , Rats , Sheep
6.
Cardiovasc Diabetol ; 16(1): 142, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29096622

ABSTRACT

BACKGROUND: Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. METHODS: Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). RESULTS: SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. CONCLUSIONS: Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Diabetic Cardiomyopathies/prevention & control , Endothelial Progenitor Cells/transplantation , Microvessels , Myocytes, Smooth Muscle/transplantation , Tissue Engineering/methods , Animals , Cells, Cultured , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 1/physiopathology , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Disease Progression , Fibrosis , Microvessels/physiopathology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Rats, Wistar , Rodentia
7.
Sci Adv ; 3(6): e1603078, 2017 06.
Article in English | MEDLINE | ID: mdl-28630913

ABSTRACT

Coronary artery disease is one of the most common causes of death and disability, afflicting more than 15 million Americans. Although pharmacological advances and revascularization techniques have decreased mortality, many survivors will eventually succumb to heart failure secondary to the residual microvascular perfusion deficit that remains after revascularization. We present a novel system that rescues the myocardium from acute ischemia, using photosynthesis through intramyocardial delivery of the cyanobacterium Synechococcus elongatus. By using light rather than blood flow as a source of energy, photosynthetic therapy increases tissue oxygenation, maintains myocardial metabolism, and yields durable improvements in cardiac function during and after induction of ischemia. By circumventing blood flow entirely to provide tissue with oxygen and nutrients, this system has the potential to create a paradigm shift in the way ischemic heart disease is treated.


Subject(s)
Myocardial Ischemia/metabolism , Myocardium/metabolism , Phototrophic Processes , Animals , Biological Therapy , Cyanobacteria , Energy Metabolism , Heart Function Tests , Hypoxia/metabolism , Myocardial Ischemia/physiopathology , Myocardial Ischemia/therapy , Myocytes, Cardiac/metabolism , Photosynthesis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...