Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Fertil Steril ; 18(2): 140-145, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38368517

ABSTRACT

BACKGROUND: It is difficult to obtain healthy oocytes in poor ovarian responders with conventional treatment methods. Thus, the need to investigate new methods is essential. This study aims to investigate ovulation induction outcomes in patients with decreased ovarian reserve (DOR) in two groups treated with double stimulation (DuoStim) during the follicular and luteal phases in comparison with the antagonist cycle. MATERIALS AND METHODS: This was a randomised clinical trial that enrolled the patients with reduced ovarian reserve. The patients referred for in vitro fertilization (IVF) at Molud Infertility Clinic, Ali Ebn Abitalib (AS) Hospital, Zahedan, Iran from 2020 to 2021. Participants were randomly divided into two groups, those who underwent treatment with DuoStim during the follicular and luteal phase (case group) and those who received the conventional antagonist cycle (control group). RESULTS: The mean number of metaphase II (MII) eggs was 7.7 ± 3.1 in the case group and 6.1 ± 3.9 in the control group (P=0.063). The mean total number of retrieved eggs in the case group was 9.2 ± 3.7 and in the control group, it was 6.9 ± 4.4 (P=0.023). The mean number of embryos obtained in the case group was 6.5 ± 3.9; in the control group, it was 4.7 ± 2.8 (P=0.016). CONCLUSION: The DuoStim method can effectively play a role in increasing the total number of retrieved eggs and embryos (registration number: IRCT20120817010617N8).

2.
Artif Organs ; 47(12): 1818-1830, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37698035

ABSTRACT

PURPOSE: Development of organoids using human primary testicular cells has remained a challenge due to the complexity of the mammalian testicular cytoarchitecture and culture methods. In this study, we generated testicular organoids derived from human primary testicular cells. Then, we evaluated the effect of stem cell factor (SCF) on cell differentiation and apoptosis in the testicular organoid model. METHODS: The testicular cells were harvested from the three brain-dead donors. Human spermatogonial stem cells (SSCs) were characterized using immunocytochemistry (ICC), RT-PCR and flow cytometry. Testicular organoids were generated from primary testicular cells by hanging drop culture method and were cultured in three groups: control group, experimental group 1 (treated FSH and retinoic acid (RA)), and experimental group 2 (treated FSH, RA and SCF), for five weeks. We assessed the expression of SCP3 (Synaptonemal Complex Protein 3) as a meiotic gene, PRM2 (Protamine 2) as a post-meiotic marker and apoptotic genes of Bax (BCL2-Associated X Protein) and Bcl-2 (B-cell lymphoma 2), respectively by using RT-qPCR. In addition, we identified the expression of PRM2 by immunohistochemistry (IHC). RESULTS: Relative expression of SCP3, PRM2 and Bcl-2 were highest in group 2 after five weeks of culture. In contrast, BAX expression level was lower in experimental group 2 in comparison with other groups. IHC analyses indicated the highest expression of PRM2 as a postmeiotic marker in group 2 in comparison to 2D culture and control groups but not find significant differences between experimental group 1 and experimental group 2 groups. Morphological evaluations revealed that organoids are compact spherical structures and in the peripheral region composed of uncharacterized elongated fibroblast-like cells. CONCLUSION: Our findings revealed that the testicular organoid culture system promote the spermatogonial stem cell (SSC) differentiation, especially in presence of SCF. Developed organoids are capable of recapitulating many important properties of a stem cell niche.


Subject(s)
Spermatogonia , Stem Cell Factor , Male , Animals , Humans , Stem Cell Factor/pharmacology , Stem Cell Factor/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Spermatogonia/metabolism , Spermatogenesis/genetics , Cell Differentiation , Organoids , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Cells, Cultured , Mammals
3.
Artif Organs ; 47(5): 840-853, 2023 May.
Article in English | MEDLINE | ID: mdl-36721957

ABSTRACT

BACKGROUND: Effective culture systems for attachment, migration, proliferation, and differentiation of spermatogonial stem cells (SSCs) can be a promising therapeutic modality for preserving male fertility. Decellularized extracellular matrix (ECM) from native testis tissue creates a local microenvironment for testicular cell culture. Furthermore, platelet-rich plasma (PRP) contains various growth factors for the proliferation and differentiation of SSCs. METHODS: In this study, human testicular cells were isolated and cultured for 4 weeks, and SSCs were characterized using immunocytochemistry (ICC) and flow cytometry. Human testicular tissue was decellularized (0.3% SDS, 1% Triton), and the efficiency of the decellularization process was confirmed by histological staining and DNA content analysis. SSCs were cultured on the human decellularized testicular matrix (DTM) for 4 weeks. The viability and the expression of differentiation genes were evaluated by MTT and real-time polymerase chain reaction (PCR), respectively. RESULTS: Histological evaluation and DNA content analysis showed that the components of ECM were preserved during decellularization. Our results showed that after 4 weeks of culture, the expression levels of BAX, BCL-2, PLZF, and SCP3 were unchanged, while the expression of PRM2 significantly increased in the cells cultured on DTM supplemented with PRP (ECM-PRP). In addition, the expression of GFRA1 was significantly decreased in the ECM group compared to the control and PRP groups. Furthermore, the MTT test indicated that viability was significantly enhanced in cells plated on DTM supplemented with PRP. CONCLUSION: Our study demonstrated that DTM supplemented with PRP can provide an effective culture system for the differentiation and viability of SSCs.


Subject(s)
Platelet-Rich Plasma , Testis , Humans , Male , Cell Differentiation , Stem Cells , DNA
4.
Int J Biol Macromol ; 235: 123801, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36842740

ABSTRACT

Spermatogenesis refers to the differentiation of the spermatogonial stem cells (SSCs) located in the base seminiferous tubules into haploid spermatozoa. Prerequisites for in vitro spermatogenesis include an extracellular matrix (ECM), paracrine factors, and testicular somatic cells which play a supporting role for SSCs. Thus, the present study evaluated the potential of co-culturing Sertoli cells and SSCs embedded in a hybrid hydrogel of agarose and laminin, the main components of the ECM. Following the three-week conventional culture of human testicular cells, the cells were cultured in agarose hydrogel or agarose/laminin one (hybrid) for 74 days. Then, immunocytochemistry, real-time PCR, electron microscopy, and morphological staining methods were applied to analyze the presence of SSCs, as well as the other cells of the different stages of spermatogenesis. Based on the results, the colonies with positive spermatogenesis markers were observed in both culture systems. The existence of the cells of all three phases of spermatogenesis (spermatogonia, meiosis, and spermiogenesis) was confirmed in the two groups, while morphological spermatozoa were detected only in the hybrid hydrogel group. Finally, a biologically improved 3D matrix can support all the physiological activities of SSCs such as survival, proliferation, and differentiation.


Subject(s)
Hydrogels , Laminin , Male , Humans , Laminin/pharmacology , Sepharose , Hydrogels/pharmacology , Spermatozoa , Spermatogenesis , Cell Differentiation/physiology , Stem Cells
5.
Reprod Sci ; 28(5): 1466-1475, 2021 05.
Article in English | MEDLINE | ID: mdl-33507524

ABSTRACT

To assess the role of three testis-specific genes including ZPBP2, PGK2, and ACRV1 in the prediction of sperm retrieval result and quality of retrieved sperm by microdissection testicular sperm extraction (micro-TESE) in non-obstructive azoospermia (NOA) patients. This was a case-control study including 57 testicular samples of NOA patients including 32 patients with successful sperm retrieval (NOA+) and 25 patients with failed sperm retrieval (NOA-), and 9 samples of men with normal spermatogenesis in the testes as the positive control (OA). We investigated the expression of candidate genes by RT-qPCR and germ cell population patterns by DNA flow cytometry in testicular biopsy samples. The association between PGK2 expressions with the quality of retrieved spermatozoa was also evaluated. The RT-qPCR data revealed a significantly higher expression of ZPBP2 and PGK2 in the NOA+ in comparison to NOA- group (P = 0.002, and P = 0.002, respectively). Flow cytometry results revealed that the haploid cell percentage was significantly higher in NOA+ vs. NOA- group (P = 0.0001). In samples with a higher percentage of haploid cells, expression levels of ZPBP2 and PGK2 were higher (P = 0.001). The PGK2 expression was significantly associated with retrieved sperm quality (P = 0.01). Our results contribute to the search for the biomarkers for predicting the presence of testicular sperm and would be useful to avoid unnecessary multiple micro-TESE. Overall, the expression pattern of the ZPBP2 and PGK2 may be useful in predicting sperm recovery success and quality of retrieved sperm in NOA patients.


Subject(s)
Azoospermia/diagnosis , Azoospermia/metabolism , Egg Proteins/metabolism , Isoenzymes/metabolism , Membrane Proteins/metabolism , Phosphoglycerate Kinase/metabolism , Spermatozoa/metabolism , Testis/metabolism , Azoospermia/pathology , Biopsy , Humans , Male , Sensitivity and Specificity
6.
Acta Histochem ; 122(8): 151627, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33002788

ABSTRACT

Spermatogonial stem cells (SSCs) are very sensitive to chemotherapy and radiotherapy, so male infertility is a great challenge for prepubertal cancer survivors. Cryoconservation of testicular cells before cancer treatment can preserve SSCs from treatment side effects. Different two-dimensional (2D) and three-dimensional (3D) culture systems of SSCs have been used in many species as a useful technique to in vitro spermatogenesis. We evaluated the proliferation of SSCs in 2D and 3D culture systems of platelet-rich plasma (PRP). testicular cells of four brain-dead patients cultivated in 2D pre-culture system, characterization of SSCs performed by RT-PCR, flow cytometry, immunocytochemistry and their functionality assessed by xenotransplantation to azoospermia mice. PRP prepared and dosimetry carried out to determine the optimized dose of PRP. After preparation of PRP scaffold, cytotoxic and histological evaluation performed and SSCs cultivated into three groups: control, 2D culture by optimized dose of PRP and PRP scaffold. The diameter and number of colonies measured and relative expression of GFRa1 and c-KIT evaluated by real-time PCR. Results indicated the expression of PLZF, VASA, OCT4, GFRa1 and vimentin in colonies after 2D pre-culture, xenotransplantation demonstrated proliferated SSCs have proper functionality to homing in mouse testes. The relative expression of c-KIT showed a significant increase as compared to the control group (*: p < 0.05) in PRP- 2D group, expression of GFRa1 and c-KIT in PRP scaffold group revealed a significant increase as compared to other groups (***: p < 0.001). The number and diameter of colonies in the PRP-2D group showed a considerable increase (p < 0.01) as compared to the control group. In PRP- scaffold group, a significant increase (p < 0.01) was seen only in the number of colonies related to the control group. Our results suggested that PRP scaffold can reconstruct a suitable structure to the in vitro proliferation of SSCs.


Subject(s)
Azoospermia/therapy , Cell Culture Techniques , Platelet-Rich Plasma/chemistry , Spermatogonia/cytology , Stem Cells/cytology , Testis/cytology , Animals , Azoospermia/genetics , Azoospermia/metabolism , Azoospermia/pathology , Biomarkers/metabolism , Cell Differentiation , Cell Proliferation , Cell Separation/methods , Culture Media/chemistry , Culture Media/pharmacology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Disease Models, Animal , Gene Expression , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Humans , Immunohistochemistry , Male , Mice , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Promyelocytic Leukemia Zinc Finger Protein/genetics , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Spermatogenesis/genetics , Spermatogonia/metabolism , Stem Cells/metabolism , Testis/metabolism , Transplantation, Heterologous/methods , Vimentin/genetics , Vimentin/metabolism
7.
Acta Histochem ; 122(8): 151623, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32992121

ABSTRACT

Improvement of in vitro culture methods of Spermatogonial Stem Cells (SSCs) is known to be an effective procedure for further study of the process of spermatogenesis and can offer effective therapeutic modality for male infertility. Tissue decellularization by providing natural 3D and extracellular matrix (ECM) conditions for cell growth can be an alternative procedure to enhance in vitro culture conditions. In the present study, the testicular tissues were taken from brain death donors. After enzymatic digestion, the tissue cells were isolated and cultured for four weeks. Then the identity of the SSCs was confirmed using anti-GFRα1 and anti-PLZF antibodies via immunocytochemistry (ICC). The differentiation capacity of SSCs were evaluated by culture of them on a layer of decellularized testicular matrix (DTM) prepared from sheep testis, as well as under two-dimensional (2D) culture with differentiation medium. After four and six weeks of the initiation of differentiation culture, the pre-meiotic, meiotic and post- meiotic genes at the mRNA and protein levels was examined via qPCR and ICC methods, respectively. The results showed that pre-meiotic, meiotic and post-meiotic genes expressions were significantly higher in the cells cultured in DTM substrate (P ≤ 0.01).The present study indicated that, the natural structure of ECM prepare the suitable conditions for further study of the spermatogenesis process in the in vitro and contributes to the maintenance and treatment of male infertility.


Subject(s)
Cell Culture Techniques , Extracellular Matrix/chemistry , Spermatogonia/cytology , Stem Cells/cytology , Testis/cytology , Animals , Biomarkers/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Cell Separation/methods , Cyclic AMP Response Element Modulator/genetics , Cyclic AMP Response Element Modulator/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Humans , Immunohistochemistry , Infertility, Male/therapy , Male , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Promyelocytic Leukemia Zinc Finger Protein/genetics , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Protamines/genetics , Protamines/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sheep , Spermatogenesis/genetics , Spermatogonia/metabolism , Stem Cells/metabolism , Testis/metabolism
8.
Acta Histochem ; 122(5): 151572, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32622422

ABSTRACT

Application of a three-dimensional (3D) culture system for in vitro proliferation and differentiation of human spermatogonial stem cells (SSCs) is a useful tool for the investigation of the spermatogenesis process and the management of male infertility particularly in prepubertal cancer patients. The main purpose of this study was to investigate the proliferation of human SSCs co-cultured with Sertoli cells in soft agar culture system (SACS) supplemented by Laminin and growth factors. Testicular cells were isolated from testes of brain-dead patients and cultured in two-dimensional (2D) culture system for 3 weeks. After 3 weeks, functional SSCs were evaluated by xenotransplantation and also identification of cells was assessed by immunocytochemistry, flow cytometry, and RT-PCR. Then, SSCs and Sertoli cells were transferred to the upper layer of SACS for 3 weeks. After 3 weeks, the number of colonies and the expression of specific SSCs and Sertoli cell markers, as well as apoptotic genes were evaluated. Our results showed that transplanted SSCs, migrated into the basement membrane of seminiferous tubules of recipient mice. The expression of PLZF, α6-Integrin, and Vimentin proteins in SSCs and Sertoli cells were observed in 2D and 3D culture systems. The expression rate of PLZF, α6-Integrin, Bcl2, and colony number in SACS supplemented by Laminin and growth factors group were significantly higher than non-supplemented groups (P ≤ 0.01), but the expression rate of c-kit and Bax in supplemented group were significantly lower than non-supplemented groups (P ≤ 0.05). This 3D co-culture system decreased apoptosis and increased propagation of human SSCs. Therefore, this designed system can be utilized to increase the proliferation of human SSCs in prepubertal male cancer and azoospermic men to obtain an adequate SSCs number to outotransplant success and in vitro spermatogenesis.


Subject(s)
Adult Germline Stem Cells/cytology , Agar/metabolism , Laminin/metabolism , Sertoli Cells/cytology , Stem Cells/cytology , Animals , Cell Culture Techniques/methods , Cell Differentiation/physiology , Coculture Techniques , Humans , Male , Mice , Testis/cytology
9.
Int. j. morphol ; 37(3): 1132-1141, Sept. 2019. tab, graf
Article in English | LILACS | ID: biblio-1012409

ABSTRACT

Spermatogonial stem cells (SSCs) have self-renewal and differentiation capacity essential for sperm production throughout the male reproductive life. The electrospun polycaprolactone/gelatin (PCL/Gel) nanofibrous scaffold mimics important features of the extracellular matrix (ECM), which can provide a promising technique for the proliferation and differentiation of SSCs in vitro. The goal of the present study was to investigate the effects of PCL/Gel nanofibrous scaffold on the propagation and differentiation of neonate mouse SSCs (mSSCs). mSSCs were enzymatically isolated, and the cells were purified by differential plating method and seeded on scaffold. After 2 weeks, viability, colony number and diameter, and expression of specific spermatogonial cell genes were investigated. After mSSCs propagation, the cells were cultivated in a differentiation medium on the scaffold for another 2 weeks, and differentiating cells were analyzed by real-time PCR. The number of mSSC colony (P<0.01) and expression levels of specific spermatogonial genes Plzf and Inga6 (P<0.01) and also differentiation genes c-Kit, Tp1 and Ptm1 (P<0.05) were higher in scaffold group compared with control during the culture period. We conclude that mSSCs can be expanded and can differentiate toward spermatid cells on PCL/Gel nanofibrous scaffold with improved developmental parameters.


Las células madre espermatogónicas (CME) tienen capacidad de auto renovación y diferenciación esenciales para la producción de esperma a lo largo de la vida reproductiva masculina. El «scaffold¼ nanofibroso de policaprolactona / gelatina (PCL / Gel) electrohilado imita características importantes de la matriz extracelular (MEC), que puede proporcionar una técnica prometedora para la proliferación y diferenciación de CME in vitro. El objetivo del presente estudio fue investigar los efectos del «scaffold¼ nanofibroso PCL / Gel en la propagación y diferenciación de CME de ratones neonatos (mSSC). Los mSSC se aislaron enzimáticamente y las células se purificaron mediante un método de siembra diferencial y se sembraron en un «scaffold¼. Después de 2 semanas, se investigaron la viabilidad, el número y el diámetro de las colonias y la expresión de genes específicos de células espermatogónicas. Después de la propagación de mSSC, las células se cultivaron en un medio de diferenciación en el «scaffold¼ durante otras 2 semanas, y las células se analizaron mediante PCR en tiempo real. El número de colonias mSSC (P <0,01) y los niveles de expresión de los genes espermatogónicos específicos Plzf e Inga6 (P <0,01) y también los genes de diferenciación c-Kit, Tp1 y Ptm1 (P <0,05) fueron mayores en el grupo de «scaffold¼ en comparación con el control durante el período de cultivo. Concluimos que los mSSC pueden expandirse y diferenciarse en células espermátidas en un «scaffold¼ de nanofibras PCL / Gel con parámetros de desarrollo mejorados.


Subject(s)
Animals , Male , Mice , Spermatogonia/cytology , Spermatogonia/metabolism , Cell Differentiation/physiology , Cell Proliferation/physiology , Polyesters/chemistry , Cell Differentiation/genetics , Cell Survival , Fluorescent Antibody Technique , Cell Proliferation/genetics , Tissue Scaffolds , Nanofibers/chemistry , Real-Time Polymerase Chain Reaction , Animals, Newborn
10.
Galen Med J ; 8: e1565, 2019.
Article in English | MEDLINE | ID: mdl-34466530

ABSTRACT

BACKGROUND: In the males, Spermatogonial Stem Cells (SSCs) contribute to the production of sex cells and fertility. In vitro SSCs culture can operate as an effective strategy for studies on spermatogenesis and male infertility treatment. Cell culture in a three-dimensional (3D) substrate, relative to a two-dimensional substrate (2D), creates better conditions for cell interaction and is closer to in vivo conditions. In the present study, in order to create a 3D matrix substrate, decellularized testicular matrix (DTM) was used to engender optimal conditions for SSCs culture and differentiation. MATERIALS AND METHODS: After, testicular cells enzymatic extraction from testes of brain-dead donors, the SSCs were proliferated in a specific culture medium for four weeks, and after confirming the identity of the colonies derived from the growth of these cells, they were cultured on a layer of DTM as well as in 2D condition with a differentiated culture medium. In the Sixth week since the initiation of the differentiation culture, the expression of pre meiotic (OCT4 & PLZF ), meiotic (SCP3 & BOULE) and post meiotic (CREM & Protamine-2) genes were measured in both groups. RESULTS: The results indicated that the expression of pre meiotic, meiotic and post meiotic genes was significantly higher in the cells cultured on DTM (P ≤ 0.001). CONCLUSION: SSCs culture in DTM with the creation of ECM and similar conditions with in vivo can be regarded as a way of demonstrating spermatogenesis in vitro, which can be adopted as a treatment modality for male infertility.

11.
Iran J Basic Med Sci ; 17(10): 808-14, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25729552

ABSTRACT

OBJECTIVES: The present study investigated the antidiabetic and hypolipidemic properties of Dorema aucheri leave hydroalcoholic extract in nicotinamide-streptozotocin induced type 2 diabetic rats. MATERIALS AND METHODS: nicotinamide/streptozotocin-induced diabetic rats were supplemented orally with three different doses of D. aucheri (100, 200 and 400 mg/kg BW) or glibenclamide (0.25 mg/kg) for 4 weeks. Ultimately, blood of animals has taken and glucose, insulin, lipid profiles, SGPT, alkaline phosphatase, SGOT, leptin levels were assayed. RESULTS: D. aucheri has highly significant blood glucose lowering effect. Administration of the extract to diabetic rats resulted in a remarkable change in serum lipid profiles, insulin and leptin levels relative to diabetic group. Also the extract reversed back the serum levels of SGPT, alkaline phosphatase and SGOT to near normal in treated diabetic rats. CONCLUSION: D. aucheri could be useful in treatment of diabetes. Moderate dose of D. aucheri (200 mg/kg) was more effective than the others.

SELECTION OF CITATIONS
SEARCH DETAIL
...