Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21418, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38049503

ABSTRACT

Zinc oxide (ZnO) nanorods and ZnO nanostructures composited with silver (Ag) and multi-walled carbon nanotubes (MWCNTs) have been synthesized by a simple impregnation-calcination method and have been shown to be suitable for use as antimicrobial agents. The preparation method used for composite materials is very simple, time-effective, and can be used for large-scale production. Several analytical techniques, including X-ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transmission infrared spectroscopy (FTIR), have been used to characterize the prepared ZnO-Ag-MWCNT composite materials. The effects on structural, morphological, and antimicrobial properties of (ZnO)100-x (Ag)x nanocomposites at various weight ratios (x = 0, 5, 10, 30, and 50 wt%) have been investigated. The antimicrobial properties of ZnO composited with Ag nanoparticles and MWCNTs towards both gram-positive and gram-negative bacteria species were studied. The effect of raw MWCNTs and MWCNTs composited with ZnO and Ag on the cell morphology and chemical composition of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was studied by SEM and EDS, respectively. It was found that composite materials made of ZnO-Ag-MWCNTs exhibit greater antibacterial activities toward the microorganisms E. coli and S. aureus than ZnO-Ag, which could be beneficial for efficient antimicrobial agents in water and air treatment applications.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanocomposites , Nanotubes, Carbon , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Silver/pharmacology , Silver/chemistry , Anti-Infective Agents/pharmacology , Nanocomposites/chemistry , Microbial Sensitivity Tests
2.
Microorganisms ; 11(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38137970

ABSTRACT

Severe environmental conditions can have a diverse impact on marine microorganisms, including bacteria. This can have an inevitable impact on the biofouling of membrane-based desalination plants. In this work, we have utilized indicator bacteria such as total coliform, fecal coliform, and Pseudomonas aeruginosa, as well as 16S rRNA sequencing, to investigate the impact of environmental conditions and spatial variations on the diversity of bacterial communities in the coastal waters and sediments from selected sites in Qatar. The concentration levels of indicator bacteria were affected by increasing temperatures and pH, and by decreasing salinity of seawater samples. Diversity indices and the molecular phylogeny demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria were the dominant phyla in all locations. The most abundant operational taxonomic units (OTUs) at the family level were from Flavobacteriaceae (27.07%, 4.31%) and Rhodobacteraceae (22.51%, 9.86%) in seawater and sediment, respectively. Alphaproteobacteria (33.87%, 16.82%), Flavobacteria (30.68%, 5.84%), and Gammaproteobacteria (20.35%, 12.45%) were abundant at the species level in both seawater and sediment, while Clostridia (13.72%) was abundant in sediment only. The results suggest that sediment can act as a reservoir for indicator bacteria, with higher diversity and lower abundance compared to seawater.

3.
Environ Pollut ; 336: 122401, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37598930

ABSTRACT

This study investigates the size distribution, microbial composition, and antibiotic resistance (ABR) of airborne bioaerosols at a suburban location in Doha, Qatar between October 2021 and January 2022. Samples were collected using an Andersen six-stage viable cascade impactor and a liquid impinger. Findings showed that the mean bacteria concentration (464 CFU/m3) was significantly higher than that of fungi (242 CFU/m3) during the study period. Both bacteria and fungi were most abundant in the aerodynamic size fractions of 1.10-2.21 µm, with peak concentrations observed in the mornings and lowest concentrations in the afternoons across all size fractions. A total of 24 different culturable species were identified, with the most abundant ones being Pasteurella pneumotropica (9.71%), Pantoea spp. 1 (8.73%), and Proteus penneri (7.77%) spp. At the phylum level, the bacterial community configurations during the autumn and winter seasons were nearly identical as revealed by molecular genomics, with Proteobacteria being the most predominant, followed by Firmicutes, Bacteroidetes, Acidobacteriota, and Planctomycetota. However, there was a significant variation in dominant genera between autumn and winter. The most abundant genera included Sphingomonas, Paraburkholderia, Comamonas, Bacillus, and Lysinibacillus. Several bacterial genera identified in this study have important public health and ecological implications, including the risk of respiratory tract infections. Furthermore, the study found that ABR was highest in December, with bioaerosols exhibiting resistance to at least 5 out of 10 antibiotics, and 100% resistance to Metronidazole in all samples. Metagenomics analysis revealed the presence of various airborne bacteria that were not detected through culture-dependent methods. This study provides valuable insights into the airborne microbial composition, temporal variability and ABR in the Arabian Gulf region.

4.
Environ Technol Innov ; 27: 102775, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35761926

ABSTRACT

The apparent uncertainty associated with shedding patterns, environmental impacts, and sample processing strategies have greatly influenced the variability of SARS-CoV-2 concentrations in wastewater. This study evaluates the use of a new normalization approach using human RNase P for the logic estimation of SARS-CoV-2 viral load in wastewater. SARS-CoV-2 variants outbreak was monitored during the circulating wave between February and August 2021. Sewage samples were collected from five major wastewater treatment plants and subsequently analyzed to determine the viral loads in the wastewater. SARS-CoV-2 was detected in all the samples where the wastewater Ct values exhibited a similar trend as the reported number of new daily positive cases in the country. The infected population number was estimated using a mathematical model that compensated for RNA decay due to wastewater temperature and sewer residence time, and which indicated that the number of positive cases circulating in the population declined from 765,729 ± 142,080 to 2,303 ± 464 during the sampling period. Genomic analyses of SARS-CoV-2 of thirty wastewater samples collected between March 2021 and April 2021 revealed that alpha (B.1.1.7) and beta (B.1.351) were among the dominant variants of concern (VOC) in Qatar. The findings of this study imply that the normalization of data allows a more realistic assessment of incidence trends within the population.

SELECTION OF CITATIONS
SEARCH DETAIL
...