Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Nucl Med ; 53(6): 752-765, 2023 11.
Article in English | MEDLINE | ID: mdl-37080822

ABSTRACT

Ventilation-perfusion (V/Q) lung scans constitute one of the oldest nuclear medicine procedures, remain one of the few studies performed in the acute setting, and are amongst the few performed in the emergency setting. V/Q studies have witnessed a long fluctuation in adoption rates in parallel to continuous advances in image processing and computer vision techniques. This review provides an overview on the status of artificial intelligence (AI) in V/Q scintigraphy. To clearly assess the past, current, and future role of AI in V/Q scans, we conducted a systematic Ovid MEDLINE(R) literature search from 1946 to August 5, 2022 in addition to a manual search. The literature was reviewed and summarized in terms of methodologies and results for the various applications of AI to V/Q scans. The PRISMA guidelines were followed. Thirty-one publications fulfilled our search criteria and were grouped into two distinct categories: (1) disease diagnosis/detection (N = 22, 71.0%) and (2) cross-modality image translation into V/Q images (N = 9, 29.0%). Studies on disease diagnosis and detection relied heavily on shallow artificial neural networks for acute pulmonary embolism (PE) diagnosis and were primarily published between the mid-1990s and early 2000s. Recent applications almost exclusively regard image translation tasks from CT to ventilation or perfusion images with modern algorithms, such as convolutional neural networks, and were published between 2019 and 2022. AI research in V/Q scintigraphy for acute PE diagnosis in the mid-90s to early 2000s yielded promising results but has since been largely neglected and thus have yet to benefit from today's state-of-the art machine-learning techniques, such as deep neural networks. Recently, the main application of AI for V/Q has shifted towards generating synthetic ventilation and perfusion images from CT. There is therefore considerable potential to expand and modernize the use of real V/Q studies with state-of-the-art deep learning approaches, especially for workflow optimization and PE detection at both acute and chronic stages. We discuss future challenges and potential directions to compensate for the lag in this domain and enhance the value of this traditional nuclear medicine scan.


Subject(s)
Artificial Intelligence , Pulmonary Embolism , Humans , Pulmonary Embolism/diagnostic imaging , Lung , Radionuclide Imaging , Perfusion Imaging , Tomography, Emission-Computed, Single-Photon/methods
2.
Comput Biol Med ; 143: 105277, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123139

ABSTRACT

PURPOSE: Absorbed dose calculation in magnetic resonance-guided radiation therapy (MRgRT) is commonly based on pseudo CT (pCT) images. This study investigated the feasibility of unsupervised pCT generation from MRI using a cycle generative adversarial network (CycleGAN) and a heterogenous multicentric dataset. A dosimetric analysis in three-dimensional conformal radiotherapy (3DCRT) planning was also performed. MATERIAL AND METHODS: Overall, 87 T1-weighted and 102 T2-weighted MR images alongside with their corresponding computed tomography (CT) images of brain cancer patients from multiple centers were used. Initially, images underwent a number of preprocessing steps, including rigid registration, novel CT Masker, N4 bias field correction, resampling, resizing, and rescaling. To overcome the gradient vanishing problem, residual blocks and mean squared error (MSE) loss function were utilized in the generator and in both networks (generator and discriminator), respectively. The CycleGAN was trained and validated using 70 T1 and 80 T2 randomly selected patients in an unsupervised manner. The remaining patients were used as a holdout test set to report final evaluation metrics. The generated pCTs were validated in the context of 3DCRT. RESULTS: The CycleGAN model using masked T2 images achieved better performance with a mean absolute error (MAE) of 61.87 ± 22.58 HU, peak signal to noise ratio (PSNR) of 27.05 ± 2.25 (dB), and structural similarity index metric (SSIM) of 0.84 ± 0.05 on the test dataset. T1-weighted MR images used for dosimetric assessment revealed a gamma index of 3%, 3 mm, 2%, 2 mm and 1%, 1 mm with acceptance criteria of 98.96% ± 1.1%, 95% ± 3.68%, 90.1% ± 6.05%, respectively. The DVH differences between CTs and pCTs were within 2%. CONCLUSIONS: A promising pCT generation model capable of handling heterogenous multicenteric datasets was proposed. All MR sequences performed competitively with no significant difference in pCT generation. The proposed CT Masker proved promising in improving the model accuracy and robustness. There was no significant difference between using T1-weighted and T2-weighted MR images for pCT generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...