Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6769, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37185995

ABSTRACT

Roses are classified as neutral day plants, but high light and cool temperatures produce high quality flowers in roses. As light quantity, the light quality and its special spectra can affect the flower yield and quality. This research aimed to study of the effect of LED light (control (sunlight), blue and red spectra's) and nano-chelated potassium at three levels (0, 1.5 and 3 g/l) on some morphophysiological and biochemical traits of Rosa hybrida cv. Dolce Vita. Light and nano-chelated potassium treatments have a significant effect on most traits measured in the present study. According to the results, the use of red light and nano-chelated potassium in rose cultivation improved the quality characteristics and increased vase life. The highest fresh and dry weight of flowering branch and plant height was observed in red light treatment and the concentration of 3 g/l nano-chelated potassium. Biochemical parameters such as phenolic compounds, leaf and petal flavonoids, petal anthocyanin content, antioxidant capacity and vase life were also significantly increased under red light and with the concentration of 3 g/l nano-chelated potassium compared to the control. In general, it can be said that the use of red light and a concentration of 3 g/l nano-chelated potassium, can be effective in improving the quality of rose flowers, especially in low light condition.


Subject(s)
Rosa , Potassium/pharmacology , Flowers , Plant Leaves , Light
2.
Sci Rep ; 9(1): 16025, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31690765

ABSTRACT

The effect of foliar application of polyamines on roses (Rosa hybrida cv. 'Herbert Stevens') was investigated in a factorial experiment based on a completely randomized design with three replications in a greenhouse. Two factors were applied including polyamine type (putrescine, spermidine, and spermine) and polyamine concentration (0, 1, 2 and 4 mM). The recorded traits included root fresh and dry weight, root length, number of flowers, flower longevity, chlorophyll content, carotenoids, antioxidant enzymes activity (catalase, ascorbate peroxidase and guaiacol peroxidase) and some macronutrients such as nitrogen, phosphorus and potassium. The results showed that among polyamines, putrescine had the greatest effect on root dry weight; spermidine showed the greatest effect on root length, chlorophyll content, plant phosphorus and spermine affected root fresh weight and flower longevity most strongly. Polyamine concentration of 1 mM had the strongest effect on flower longevity, carotenoids, nitrogen and phosphorus content. The highest potassium rate was observed in treatments with the concentration of 4 mM. Polyamine treatments had no significant effect on the number of flowers per plant and antioxidant enzymes.


Subject(s)
Photosynthesis/drug effects , Plant Proteins/metabolism , Polyamines/pharmacology , Rosa/metabolism , Carotenoids/metabolism , Catalase/metabolism , Chlorophyll/analysis , Flowers/growth & development , Flowers/metabolism , Nitrogen/metabolism , Peroxidase/metabolism , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Potassium/metabolism , Rosa/drug effects , Rosa/growth & development
3.
Asian Pac J Trop Biomed ; 4(Suppl 1): S424-8, 2014 May.
Article in English | MEDLINE | ID: mdl-25183122

ABSTRACT

OBJECTIVE: To develop an in vitro regeneration system to increase the recovery of Carum copticum L. plantlets as a part of developing a metabolic engineering program. METHODS: The efficacy of different concentrations and combinations of 6-benzyladenine, indole-3-acetic acid and indole butyric acid on direct shoot regeneration and rooting of ajowan from apical bud explants were assessed. All explants were cultured on Murashige and Skoog (MS) medium supplemented with different combinations of 6-benzyl amino purine (BAP) (0, 2.2, 4.4, 8.8 µmol/L) and indole-3-acetic acid (IAA) (0, 0.5, 1.1, 2.2 µmol/L). RESULTS: The maximum shoot regeneration frequency (97.5%) and the highest number of shoots produced from apical buds (34 shoots per explant) were obtained on MS medium fortified with BAP (4.4 µmol/L) and IAA (0.5 µmol/L). Low shoot regeneration frequency was observed in BAP free treatments. The effects of different strengths of MS medium and various concentrations of IAA and indole-3- butyric acid on rooting rate, length and average number of roots were also investigated. Application of indole-3- butyric acid (6 µmol/L) in full-strength MS medium, was more effective than IAA and resulted in highest shoot regeneration frequency with the rooting rate of 100% and highest mean number of roots per shoot (41.8). The rooted plantlets were acclimatized successfully in greenhouse conditions with a survival rate of 90%. CONCLUSION: In this study, a simple and reliable regeneration and acclimatization protocol for Carum copticum has been presented. This protocol can be found very advantageous for a variety of purposes, including mass multiplication of Carum species, medicinal plant breeding studies and transgenic plant production.

SELECTION OF CITATIONS
SEARCH DETAIL
...