Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(20): 21798-21804, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799327

ABSTRACT

This paper presents a versatile method to fabricate ultrathin nanofibrillated cellulose (NFC) films as thin as 800 nm by blade coating, which is compatible with a roll-to-roll process on a large scale. Our approach allows obtaining a dried nanocellulose film within a span of 1 h subsequent to 2,2,6,6-tetramethylpiperidine-1-oxyl radical-assisted oxidation and homogenization procedures. One of the thinnest freestanding NFC films with a thickness of 800 nm is achieved using a blade coating of nanocellulose after 72 h of oxidation followed by homogenization with a channel size of 65 µm. Incorporating water-soluble CdTe core-type quantum dots into the nanocellulose film led to a uniform emission under 385 nm UV irradiation, indicating excellent material compatibility. We anticipate nanocellulose developed in our study to be beneficial in biomimicry flying objects, environmentally friendly encapsulation, color filters, and energy storage device membranes, to name a few.

2.
Materials (Basel) ; 15(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955293

ABSTRACT

The bending effect of self-catalyst zinc oxide nanowires on a photoconducting behavior has been investigated by in-situ scanning electron microscope method and interpreted by analytical modeling. Zinc oxide NWs tend to incline due to geometric instability and because of the piezoelectric properties, which was confirmed by scanning electron microscope images. A cantilever bending model adequately describes the bending and bundling events, which are linked to the electrostatic interaction between nanowires. The light absorption of zinc oxide nanowires in the visible and near infrared bands has been modelled using the finite difference time domain method. The influence of the density of nanowires (25%, 50%, 75%) and the integration of plasmonic nanoparticles distributed on the seed layer (with varied radii) on the light absorption of zinc oxide nanowires was studied using simulation analysis. We have shown that the geometry of zinc oxide nanowires in terms of length, separation distance, and surface charge density affects the process of zinc oxide nanowires bending and bundling and that absorption will be maximized by integrating Au plasmonic nanoparticles with a radius of 10 nm.

3.
ACS Appl Bio Mater ; 5(8): 3734-3740, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35830575

ABSTRACT

The COVID-19 pandemic has demonstrated the need for versatile and robust countermeasures against viral threats. A wide range of viruses, including SARS-CoV-2, the virus that causes COVID-19, can be deactivated by metal and metal-oxide surface coatings. However, such coatings are expensive and cannot easily be retrofitted to existing infrastructure. Low-cost materials to halt the propagation of a variety of viruses must be produced with minimal quantities of expensive precursors. In this regard, we show that commercially available copper oxide nanoparticle suspensions can deactivate more than 99.55% of the human coronavirus 229E in 30 min, confirming the particles' efficiency as a fast antiviral material.


Subject(s)
COVID-19 , Pandemics , Copper/pharmacology , Humans , Oxides , Pandemics/prevention & control , SARS-CoV-2
4.
ACS Omega ; 7(8): 6616-6626, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252657

ABSTRACT

Undoped and Nb-doped TiO2 nanocrystals are prepared by a microwave-assisted non-aqueous sol-gel method based on a slow alkyl chloride elimination reaction between metal chlorides and benzyl alcohol. Sub-4 nm nanoparticles are grown under microwave irradiation at 80 °C in only 3 h with precise control of growth parameters and yield. The obtained nanocrystals could be conveniently used to cast compact TiO2 or Nb-doped TiO2 electron transport layers for application in formamidinium lead iodide-based photovoltaic devices. Niobium doping is found to improve the cell performance by increasing the conductivity and mobility of the electron transport layer. At the same time, a measurable decrease in parasitic light absorption in the low wavelength portion of the spectrum was observed.

5.
ACS Appl Nano Mater ; 5(1): 309-317, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-37556279

ABSTRACT

The Coronavirus disease 2019 (COVID-19) global outbreak and its continued growth and mutation into various forms emphasize the need for effective disinfectants to assist in the reduction of the virus's spread from individual to individuals and community to communities through various modes, including coughing, sneezing, touching of contaminated surfaces, and being in proximity of an unprotected infected person, to mention a few. The rapid development of reliable disinfecting materials or solutions and their incorporation in personal protective equipment is a critical need at the moment that will assist significantly in curbing the spread of the virus SARS-CoV-2, the cause of COVID-19 illness. Here, we present an in situ assembly of antiviral metal nanoparticles on a rigid surface and on commercial face masks made up of nonwoven and woven textiles. The results indicate a very high efficacy of 99.99% against a surrogate virus to SARS-CoV-2. Such a versatile and cost-effective approach using the blade-coating technique can be easily extended to the roll-to-roll manufacturing setting to expedite the efforts and mitigate the rapid spread of the virus.

6.
Sci Rep ; 11(1): 2866, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536517

ABSTRACT

In the present work, silver nanoparticles were prepared by using the extract of Camellia Sinensis. The extract contains phytochemicals which are mainly polyphenols acting as the natural reducing and stabilizing agents leading to the formation of uniformly dispersed and stabilized silver nanoparticles. The synthesis of silver nanoparticles was significantly influenced by the impact of the pH, as well as temperature conditions. It was found that at pH 5 and 25 °C, nanoparticles of different morphologies (spherical, polygonal, capsule) and sizes were formed. However, with the increase in temperature from 25 °C to 65 °C but at the same pH, these particles started attaining the spherical shape of different sizes owing to an increase in the reduction rate. Furthermore, for the reaction of the mixture at 65 °C, an increase in pH from 5 to 11 led to an increase in the monodispersity of spherically shaped nanoparticles, attributed to the hydroxide ions facilitated reduction. The prepared nanoparticles were investigated for their antibacterial activity using Nathan's Agar Well-Diffusion method. It was found that AgNPs prepared at pH 9 and 65 °C demonstrated strong antibacterial activity against gram-negative Escherichia coli in contrast to gram-positive Staphylococcus aureus. In reference to the cytotoxic potency, the prepared AgNPs showed clear cytotoxicity for HeLa cells and showcased a close relationship between activity and concentration as evidenced by the decrease in the percentage (100 to 30%) of metabolically active cells up to 25 µM-75 µM concentration of silver nanoparticles.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Camellia sinensis/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , Escherichia coli/drug effects , HeLa Cells , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Plant Extracts/chemistry , Silver/chemistry , Silver/pharmacology , Staphylococcus aureus , Temperature
7.
RSC Adv ; 11(37): 23136-23143, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-35480438

ABSTRACT

To help contain the spread of the COVID-19 pandemic and to protect front-line workers, new antiviral measures are required. Antiviral nanoparticles are one such possible measure. Metal nanoparticles made from a variety of metals including gold, silver, and copper can kill or disable viruses that cause significant health problems in humans (such as SARS-CoV-2, HIV, or influenza). To promote interaction between nanoparticles and viruses the stabilizing ligands on the nanoparticle surface should be optimized for docking with proteins. The enormous chemical space of possible nanoparticle ligands makes this optimization experimentally and computationally intractable. Here we present a datamining-based study that searched for nanoparticle ligands that have previously been used, and computationally tested these for their ability to dock with the SARS-CoV-2 spike glycoprotein. These ligands will coat future antiviral nanoparticles to be used outside of the body, not as drugs. The best of these ligands identified were: nitric acid (score: 0.95), phosphoroselenoic acid (score: 0.88), hydroxyammonium (score: 0.83), pyrophosphoric acid (score: 0.81). Inspection of the best of these ligands has suggested design principles for future antiviral nanoparticle ligands, and we suggest further ligands based on these principles. These results will be used to inspire further in vitro and in silico experimentation to accelerate the development of antiviral nanoparticles.

8.
Materials (Basel) ; 13(19)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027992

ABSTRACT

Vertically-oriented zinc oxide (ZnO) nanowires were synthesized on glass and silicon substrates by Pulsed Laser Deposition and without the use of a catalyst. An intermediate c-axis oriented nanotextured ZnO seed layer in the form of nanowall network with honey comb structure allows the growth of high quality, self-forming, and vertically-oriented nanowires at relatively low temperature (<400 °C) and under argon atmosphere at high pressure (>5 Torr). Many parameters were shown to affect the growth of the ZnO nanowires such as gas pressure, substrate-target distance, and laser energy. Growth of a c-axis-crystalline array of nanowires growing vertically from the energetically favorable sites on the seed layer is observed. Nucleation occurs due to the matching lattice structure and the polar nature of the ZnO seed layer. Morphological, structural, and optical properties were investigated. X-ray diffraction (XRD) revealed highly c-axis aligned nanowires along the (002) crystal plane. Room temperature photoluminescence (PL) measurements showed a strong and narrow bandwidth of Ultraviolet (UV) emission, which shifts to lower wavelength with the increase of pressure.

9.
Nanoscale ; 7(8): 3338-55, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25366473

ABSTRACT

In this review, we survey several recent developments in printing of nanomaterials for contacts, transistors, sensors of various kinds, light-emitting diodes, solar cells, memory devices, and bone and organ implants. The commonly used nanomaterials are classified according to whether they are conductive, semiconducting/insulating or biological in nature. While many printing processes are covered, special attention is paid to inkjet printing and roll-to-roll printing in light of their complexity and popularity. In conclusion, we present our view of the future development of this field.

10.
Angew Chem Int Ed Engl ; 53(2): 420-3, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24352872

ABSTRACT

A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2) nm can be made at low temperature (120 °C). The size of the resulting NPs can be readily controlled through the concentration of the gold precursor and oleylamine ink. The pure gold composition of the synthesized NPs was confirmed by energy-dispersive X-ray spectroscopy (EDXS) analysis. High-resolution SEM (HRSEM) and TEM (HRTEM), and X-ray diffraction revealed their size and face-centered cubic (fcc) crystal structure, respectively. Owing to the high density of the NP film, UV/Vis spectroscopy showed a red shift in the intrinsic plasmonic resonance peak. We envision the extension of this approach to the synthesis of other nanomaterials and the production of tailored functional nanomaterials and devices.

11.
ACS Appl Mater Interfaces ; 5(9): 3855-60, 2013 May.
Article in English | MEDLINE | ID: mdl-23560572

ABSTRACT

Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.


Subject(s)
Liquid Crystals/chemistry , Pyrenes/chemistry , Semiconductors , Temperature
12.
Sci Rep ; 3: 1562, 2013.
Article in English | MEDLINE | ID: mdl-23536206

ABSTRACT

Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object's internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices. This paper demonstrates the use of SD-OCT in a simulated roll-to-roll (R2R) process through monitoring some structural properties of moving screen printed interdigitated electrodes. It is shown that structural properties can be resolved for speeds up to ca. 1 m/min, which is the first step towards application of this method in real manufacturing processes, including roll-to-roll (R2R) printing.

13.
Adv Mater ; 25(12): 1769-73, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23293006

ABSTRACT

Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained.

14.
Nanotechnology ; 23(49): 495605, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23154269

ABSTRACT

Many colloidal synthesis routes are not scalable to high production rates, especially for nanoparticles of complex shape or composition, due to precursor expense and hazards, low yields, and the large number of processing steps. The present work describes a strategy to synthesize hollow nanoparticles (HNPs) out of metal chalcogenides, based on the slow heating of a low-melting-point metal salt, an elemental chalcogen, and an alkylammonium surfactant in octadecene solvent. The synthesis and characterization of CdSe HNPs with an outer diameter of 15.6 ± 3.5 nm and a shell thickness of 5.4 ± 0.9 nm are specifically detailed here. The HNP synthesis is proposed to proceed with the formation of alkylammonium-stabilized nano-sized droplets of molten cadmium salt, which then come into contact with dissolved selenium species to form a CdSe shell at the droplet surface. In a reaction-diffusion mechanism similar to the nanoscale Kirkendall effect it is speculated that the cadmium migrates outwardly through this shell to react with more selenium, causing the CdSe shell to thicken. The proposed CdSe HNP structure comprises a polycrystalline CdSe shell coated with a thin layer of amorphous selenium. Photovoltaic device characterization indicates that HNPs have improved electron transport characteristics compared to standard CdSe quantum dots, possibly due to this selenium layer. The HNPs are colloidally stable in organic solvents even though carboxylate, phosphine, and amine ligands are absent; stability is attributed to octadecene-selenide species bound to the particle surface. This scalable synthesis method presents opportunities to generate hollow nanoparticles with increased structural and compositional variety.


Subject(s)
Cadmium Compounds/chemistry , Crystallization/methods , Microfluidics/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Selenium Compounds/chemistry , Hot Temperature , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
15.
Chem Commun (Camb) ; 48(42): 5106-8, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22513343

ABSTRACT

An efficient blue light emitting diode based on solution processable pyrene-1,3-alt-calix[4]arene is demonstrated, providing a record current efficiency of 10.5 cd A(-1) in a simple non-doped OLED configuration. Complete suppression of pyrene aggregation in the solid state is achieved by controlling chromophore dispersion using the 1,3-alt-calix[4]arene scaffold.

16.
ACS Appl Mater Interfaces ; 2(5): 1390-4, 2010 May.
Article in English | MEDLINE | ID: mdl-20405965

ABSTRACT

We report that device performance of organic solar cells consisting of zinc phthalocyanine and fullerene (C(60)) can be enhanced by insertion of a perylene derivative interfacial layer between fullerene and bathocuproine (BCP) exciton blocking layer (EBL). The morphology of the BCP is influenced by the underlying N,N'-dihexyl-perylene-3,4,9,10-bis(dicarboximide) (PTCDI-C6), which promotes migration of the cathode metal into the BCP layer. Insertion of a PTCDI-C6 layer between fullerene and BCP layers enhances the power conversion efficiency to 2.5%, an improvement of 32% over devices without PTCDI-C6 layer. The enhancement in device performance by insertion of PTCDI-C6 is attributed to a reduction in series resistance due to promoted metal migration into BCP and optimized optical interference effects in multilayered devices.


Subject(s)
Electric Power Supplies , Organic Chemicals/chemistry , Perylene/chemistry , Solar Energy , Equipment Design , Equipment Failure Analysis , Materials Testing , Surface Properties
17.
Adv Mater ; 22(6): 673-85, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20217769

ABSTRACT

In this Progress Report we provide an update on recent developments in inkjet printing technology and its applications, which include organic thin-film transistors, light-emitting diodes, solar cells, conductive structures, memory devices, sensors, and biological/pharmaceutical tasks. Various classes of materials and device types are in turn examined and an opinion is offered about the nature of the progress that has been achieved.


Subject(s)
Biosensing Techniques/instrumentation , Printing , Biocompatible Materials/chemistry , Biosensing Techniques/methods , Biotechnology/methods , Ink , Printing/methods , Solar Energy , Transistors, Electronic
19.
Chem Commun (Camb) ; (29): 3700-2, 2005 Aug 07.
Article in English | MEDLINE | ID: mdl-16027916

ABSTRACT

A new solution processable nanocomposite material has been prepared via the Heck coupling of octavinylsilsesquioxane with a selected bromoaromatic hole transport compound. Resultant electroluminescent devices show an 18% improvement in external quantum efficiencies over their small molecule analogues.

20.
Appl Opt ; 41(19): 3988-98, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12099610

ABSTRACT

Direct photolithographic deforming of hybrid glass films is used to fabricate optical structures. The structure is fabricated in polyethylene-oxide-acrylate modified hybrid glass films with (1) binary and gray-scale photomasks using a mercury UV-lamp exposure and (2) maskless UV-laser patterning. Fabrication of isolated lenslets, lens arrays, and gratings is presented, including the associated exposure patterns. The hybrid glass material yields light-induced deformation peak-to-valley (p.v.) heights up to 12.8 microm with mercury UV-lamp exposure and p.v. deformation heights up to 6.8 microm with 365-nm UV-laser exposure. The fabricated lenslets' surface data are presented as Zernike-polynomial fit coefficients. Material synthesis and processing-related aspects are examined to understand and control the material's deformation under exposure. The hybrid glass material exhibits a maximum spectral extinction coefficient of 1.6 x 10(-3) microm(-1) at wavelengths ranging from 450 to 2,200 nm and has a refractive index of 1.52 at 632.8 nm. The fabricated structures exhibit rms surface roughness between 1 and 5 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...