Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1227886, 2023.
Article in English | MEDLINE | ID: mdl-37635973

ABSTRACT

Introduction: The Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) created separate growth charts for girls and boys because growth patterns and rates differ between sexes. However, scenarios exist in which this dichotomizing "girls versus boys" approach may not be ideal, including the care of non-binary youth or transgender youth undergoing transitions consistent with their gender identity. There is therefore a need for growth charts that age smooth differences in pubertal timing between sexes to determine how youth are growing as "children" versus "girls or boys" (e.g., age- and sex-neutral, compared to age- and sex-specific, growth charts). Methods: Employing similar statistical techniques and datasets used to create the CDC 2000 growth charts, we developed age-adjusted, sex non-specific growth charts for height, weight, and body mass index (BMI), and z-score calculators for these parameters. Specifically, these were created using anthropometric data from five US cross-sectional studies including National Health Examination Surveys II-III and National Health and Nutrition Examination Surveys I-III. To illustrate contemporary clinical practice, we overlaid our charts on CDC 2000 girls and boys growth charts. Results: 39,119 youth 2-20 years old (49.5% female; 66.7% non-Hispanic White; 21.7% non-Hispanic Black) were included in the development of our growth charts, reference ranges, and z-score calculators. Respective curves were largely superimposable through around 10 years of age after which, coinciding with pubertal onset timing, differences became more apparent. Discussion: We conclude that age-adjusted, sex non-specific growth charts may be used in clinical situations such as transgender youth in which standard "girls versus boys" growth charts are not ideal. Until longitudinal auxological data are available in these populations, our growth charts may help to assess a transgender youth's growth trajectory and weight classification, and expectations surrounding these.


Subject(s)
Gender Identity , Transgender Persons , United States/epidemiology , Humans , Female , Adolescent , Male , Child, Preschool , Child , Young Adult , Adult , Cross-Sectional Studies , Growth Charts , Sexual Behavior
2.
Clin Pharmacokinet ; 62(7): 955-968, 2023 07.
Article in English | MEDLINE | ID: mdl-37415003

ABSTRACT

BACKGROUND: Busulfan is commonly used in the chemotherapy prior to hematopoietic cell transplantation (HCT). Busulfan has a narrow therapeutic window and a well-established exposure-response relationship with important clinical outcomes. Model-informed precision dosing (MIPD) based on population pharmacokinetic (popPK) models has been implemented in the clinical settings. We aimed to systematically review existing literature on popPK models of intravenous busulfan. METHODS: We systematically searched Ovid MEDLINE, EMBASE, Cochrane Library, Scopus, and Web of Science databases from inception to December 2022 to identify original popPK models (nonlinear mixed-effect modeling) of intravenous busulfan in HCT population. Model-predicted busulfan clearance (CL) was compared using US population data. RESULTS: Of the 44 eligible popPK studies published since 2002, 68% were developed predominantly in children, 20% in adults, and 11% in both children and adults. The majority of the models were described using first-order elimination or time-varying CL (69% and 26%, respectively). All but three included a body-size descriptor (e.g., body weight, body surface area). Other commonly included covariates were age (30%) and GSTA1 variant (15%). Median between-subject and between-occasion variabilities of CL were 20% and 11%, respectively. Between-model variabilities in predicted median CL were < 20% in all of the weight tiers (10-110 kg) in the simulation based on US population data. CONCLUSION: Busulfan PK is commonly described using a first-order elimination or time-varying CL. A simple model with limited covariates were generally sufficient to attain relatively small unexplained variabilities. However, therapeutic drug monitoring may still be necessary to attain a narrow target exposure.


Subject(s)
Busulfan , Hematopoietic Stem Cell Transplantation , Child , Adult , Humans , Busulfan/pharmacokinetics , Administration, Intravenous , Body Surface Area , Drug Monitoring
3.
Clin Pharmacokinet ; 62(8): 1081-1091, 2023 08.
Article in English | MEDLINE | ID: mdl-37284975

ABSTRACT

BACKGROUND AND OBJECTIVES: Rabbit anti-thymocyte globulin (rATG), a therapeutic polyclonal antibody against human T cells, is commonly used in conditioning therapy prior to allogeneic hematopoietic cell transplantation (HCT). Previous studies successfully developed an individualized rATG dosing regimen based on "active" rATG population PK (popPK) analysis, while "total" rATG can be a more logistically favorable alternative for early HCT outcomes. We conducted a novel popPK analysis of total rATG. METHODS: Total rATG concentration was measured in adult human-leukocyte antigen (HLA) mismatched HCT patients who received a low-dose rATG regimen (total 2.5-3 mg/kg) within 3 days prior to HCT. PopPK modeling and simulation was performed using nonlinear mixed effect modeling approach. RESULTS: A total of 504 rATG concentrations were available from 105 non-obese patients with hematologic malignancy (median age 47 years) treated in Japan. The majority had acute leukemia or malignant lymphoma (94%). Total rATG PK was described by a two-compartment linear model. Influential covariate relations include ideal body weight [positively on both clearance (CL) and central volume of distribution], baseline serum albumin (negatively on CL), CD4+ T cell dose (positively on CL), and baseline serum IgG (positively on CL). Simulated covariate effects predicted that early total rATG exposures were affected by ideal body weight. CONCLUSIONS: This novel popPK model described the PK of total rATG in the adult HCT patients who received a low-dose rATG conditioning regimen. This model can be used for model-informed precision dosing in the settings with minimal baseline rATG targets (T cells), and early clinical outcomes are of interest.


Subject(s)
Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Adult , Middle Aged , Antilymphocyte Serum/therapeutic use , T-Lymphocytes , Hematologic Neoplasms/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Immunosuppressive Agents
4.
J Pharmacokinet Pharmacodyn ; 50(2): 123-132, 2023 04.
Article in English | MEDLINE | ID: mdl-36617366

ABSTRACT

In a nonlinear mixed-effects modeling (NLMEM) approach of pharmacokinetic (PK) and pharmacodynamic (PD) data, two levels of random effects are generally modeled: between-subject variability (BSV) and residual unexplained variability (RUV). The goal of this simulation-estimation study was to investigate the extent to which PK and RUV model misspecification, errors in recording dosing and sampling times, and variability in drug content uniformity contribute to the estimated magnitude of RUV and PK parameter bias. A two-compartment model with first-order absorption and linear elimination was simulated as a true model. PK parameters were clearance 5.0 L/h; central volume of distribution 35 L; inter-compartmental clearance 50 L/h; peripheral volume of distribution 50 L. All parameters were assumed to have a 30% coefficient of variation (CV). One hundred in-silico subjects were administered a labeled dose of 120 mg under 4 sample collection designs. PK and RUV model misspecifications were associated with relatively larger increases in the magnitude of RUV compared to other sources for all levels of sampling design. The contribution of dose and dosing time misspecifications have negligible effects on RUV but result in higher bias in PK parameter estimates. Inaccurate sampling time data results in biased RUV and increases with the magnitude of perturbations. Combined perturbation scenarios in the studied sources will propagate the variability and accumulate in RUV magnitude and bias in PK parameter estimates. This work provides insight into the potential contributions of many factors that comprise RUV and bias in PK parameters.


Subject(s)
Models, Biological , Nonlinear Dynamics , Humans , Computer Simulation
5.
J Clin Pharmacol ; 63(1): 135-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36063026

ABSTRACT

Phosphoramide mustard (PM) is the final cytotoxic metabolite formed from the parent compound cyclophosphamide through a complex metabolic pathway, primarily through hepatic metabolism. Little is known about the effect of renal elimination on the disposition of PM. We evaluated the effect of renal function on PM exposure after single doses of cyclophosphamide in 85 patients undergoing allogeneic hematopoietic cell transplantation using nonlinear mixed-effects modeling. Mixed linear and nonlinear elimination pathways were required to adequately describe the disposition of PM. Creatinine clearance (CrCL) was incorporated as a covariate associated with first-order elimination, representing renal clearance (ClR ) of PM. For a 70-kg patient, ClR was 14.9 L/h, Volume of distribution was 525 L, maximum rate was 81.2 mg/h, and the concentration to achieve 50% of maximum rate was 0.51 mg/L. We conducted simulations to explore the impact of CrCL as a measure of renal function and observed that when CrCL decreases from 120 to 40 mL/min, PM area under the plasma concentration-time curve (AUC) from time 0 to 8 hours and AUC increases by 9.2% and 80.9% on average after a single dose, respectively. Our data suggest that renal function has limited influence on PM exposure during the first 8 hours after dosing but has a large impact on the total exposure. Dose adjustment of cyclophosphamide may not be necessary in hematopoietic cell transplant recipients with moderate to severe kidney dysfunction to attain targeted exposures based on AUC from time 0 to 8 hours. However, dose reduction may be necessary if demonstrated at some future time that total AUC is a better surrogate for safety or toxicity.


Subject(s)
Hematopoietic Stem Cell Transplantation , Humans , Phosphoramide Mustards/metabolism , Cyclophosphamide , Kidney/metabolism
6.
Transplant Cell Ther ; 28(12): 845.e1-845.e8, 2022 12.
Article in English | MEDLINE | ID: mdl-36167308

ABSTRACT

Cyclophosphamide (CY) is an alkylating agent widely used in the field of oncology and hematopoietic cell transplantation (HCT). It is recommended to use an adjusted body weight with an adjustment factor of 0.25 (ABW25) for dosing of CY in obese patients undergoing HCT. However, evidence based on the pharmacokinetics (PK) of CY to support this recommendation is lacking. We aimed to identify a dosing strategy of CY that achieves equivalent exposures among obese and nonobese patients. The present study is a secondary analysis of a previously conducted observational PK study of phosphoramide mustard (PM), the final cytotoxic metabolite of CY. Data were collected from 85 adults with hematologic malignancy who received a single infusion of CY 50 mg/kg, fludarabine, ± anti-thymocyte globulin, and a single fraction of total body irradiation as HCT conditioning therapy. A previously developed population PK model in these patients was used for simulations. Using individualized PK parameters from that analysis, simulations were performed to assess cumulative exposures of PM (i.e., area-under-the-curve [AUC]) resulting from 8 different dosing strategies according to various measures of body size: (1) "mg/kg" by total body weight (TBW); (2) "mg/kg" by ideal body weight (IBW); (3) "mg/kg" by fat free mass; (4) "mg/m2" by body surface area (BSA); (5) "mg/kg" by TBW combined with ABW25 (TBW-ABW25); (6) "mg/kg" by IBW combined with ABW25 (IBW-ABW25); (7) "mg/kg" by TBW combined with ABW by adjustment factor of 0.50 (TBW-ABW50); and (8) "mg" by fixed-dose. We defined equivalent exposure as the effect of obesity on PM AUC within ±20% from the PM AUC in the nonobese group, where obesity is defined based on TBW/IBW ratio (i.e., nonobese, <1.2; mildly obese, 1.2-1.5; and moderately/severely obese, >1.5). Primary and secondary outcomes were PM AUC0-8hours and PM AUC0-infinity, respectively. In the 85 patients, with the median age of 63 years (range 21-75), 46% were classified as mildly and 25% were moderately/severely obese based on the TBW/IBW ratio. Negative correlations (i.e., higher the extent of obesity, lower the PM AUC) were shown when dosing simulations were based on IBW, TBW-ABW25, and fixed dosing (P < .05). Positive correlations were shown when dosing was simulated by TBW (P < .05). None of the 8 dosing strategies attained equivalent PM AUC0-8hours between patients with versus without obesity, whereas dosing by BSA and TBW-ABW50 attained equivalent PM AUC0-infinity (P < .05). Our study predicted that the recommended ABW25 dose adjustment may result in lower exposure of CY therapy in obese patients than in nonobese. A CY dosing strategy that would result in similar PM concentrations between obese and nonobese was not identified for early exposure (i.e., PM AUC0-8hours). The data suggest though that CY dosing based on "mg/m2" by BSA or "mg/kg" by TBW-ABW50 would result in similar total exposure (i.e., PM AUC0-infinity) and may minimize exposure differences in obese and nonobese patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Obesity , Adult , Humans , Young Adult , Middle Aged , Aged , Cyclophosphamide/therapeutic use , Obesity/therapy , Ideal Body Weight , Area Under Curve
7.
J Clin Pharmacol ; 62(7): 855-862, 2022 07.
Article in English | MEDLINE | ID: mdl-34970774

ABSTRACT

Voriconazole is a widely used antifungal agent in immunocompromised patients, but its utility is limited by its variable exposure and narrow therapeutic index. Population pharmacokinetic (PK) models have been used to characterize voriconazole PK and derive individualized dosing regimens. However, determinants of temporal within-patient variability of voriconazole PK were not well established. We aimed to characterize temporal variability of voriconazole PK within individuals and identify predictive clinical factors. This study was conducted as a part of a single-institution, phase I study of intravenous voriconazole in children undergoing hematopoietic cell transplantation (NCT02227797). We analyzed voriconazole PK study data collected at week 1 and again at week 2 after the start of voriconazole therapy in 59 pediatric patients undergoing HCT (age <21 years). Population PK analysis using nonlinear mixed effect modeling was performed to analyze temporal within-individual variability of voriconazole PK by incorporating a between-occasion variability term in the model. A 2-compartment linear elimination model incorporating body weight and cytochrome P450 2C19 phenotype described the data. The ratio of individual voriconazole clearance between weeks 1 and 2 ranged from 0.11 to 3.3 (-9.1 to +3.3-fold change). Incorporation of covariate effects by serum C-reactive protein and albumin levels decreased between-occasion variability of clearance as compared to the model without them (coefficient of variation, 41.2% and 59.5%, respectively) and improved the model fit (P < .05). As significant covariates on voriconazole PK, C-reactive protein and albumin concentrations may potentially serve as useful biomarkers as part of therapeutic drug monitoring.


Subject(s)
C-Reactive Protein , Hematopoietic Stem Cell Transplantation , Antifungal Agents , Child , Drug Monitoring , Humans , Voriconazole
8.
Pharmaceutics ; 13(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073609

ABSTRACT

A specific model for drug absorption is necessarily assumed in pharmacokinetic (PK) analyses following extravascular dosing. Unfortunately, an inappropriate absorption model may force other model parameters to be poorly estimated. An added complexity arises in population PK analyses when different individuals appear to have different absorption patterns. The aim of this study is to demonstrate that a deep neural network (DNN) can be used to prescreen data and assign an individualized absorption model consistent with either a first-order, Erlang, or split-peak process. Ten thousand profiles were simulated for each of the three aforementioned shapes and used for training the DNN algorithm with a 30% hold-out validation set. During the training phase, a 99.7% accuracy was attained, with 99.4% accuracy during in the validation process. In testing the algorithm classification performance with external patient data, a 93.7% accuracy was reached. This algorithm was developed to prescreen individual data and assign a particular absorption model prior to a population PK analysis. We envision it being used as an efficient prescreening tool in other situations that involve a model component that appears to be variable across subjects. It has the potential to reduce the time needed to perform a manual visual assignment and eliminate inter-assessor variability and bias in assigning a sub-model.

9.
Antimicrob Agents Chemother ; 65(9): e0062321, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34097481

ABSTRACT

Prophylactic voriconazole use is recommended for children undergoing hematopoietic cell transplantation (HCT). Dosing considerations are essential, due to the narrow therapeutic window of voriconazole. Known covariates do not sufficiently explain the large interindividual pharmacokinetic (PK) variability of voriconazole. Moreover, knowledge of voriconazole PK for age <2 years is limited. We investigated genetic and clinical covariate associations with voriconazole interindividual PK variability and subsequently simulated dosing regimens in children. This study was conducted as part of a single-institution, phase I study of intravenous voriconazole therapy for children undergoing HCT. We conducted a population PK analysis and tested covariate effects on voriconazole PK, including 67 genetic variants and clinical variables. We analyzed plasma voriconazole and N-oxide metabolite concentrations from 58 children <21 years of age (including 12 children <2 years of age). A two-compartment parent mixed linear/nonlinear model best described our data. The CYP2C19 phenotype and body weight were significant covariates (P < 0.05 for both). Our model performance for age <2 years was comparable to that for other age groups. Simulation of the final model suggested the following doses to attain target steady-state trough concentrations of 1.5 to 5.0 mg/liter for the CYP2C19 normal phenotype: 16 mg/kg (weight of <15 kg), 12 mg/kg (weight of 15 to 30 kg), or 10 mg/kg (weight of >30 kg); doses were 33 to 50% lower for CYP2C19 poor/intermediate phenotypes and 25 to 50% higher for CYP2C19 rapid/ultrarapid phenotypes. We propose a new starting-dose regimen, combined with therapeutic drug monitoring, for intravenous voriconazole therapy in children of all ages. Future studies should validate this dosing regimen.


Subject(s)
Antifungal Agents , Hematopoietic Stem Cell Transplantation , Antifungal Agents/therapeutic use , Body Weight , Child , Child, Preschool , Cytochrome P-450 CYP2C19/genetics , Genotype , Humans , Infant , Phenotype , Voriconazole
11.
Br J Clin Pharmacol ; 87(3): 1098-1110, 2021 03.
Article in English | MEDLINE | ID: mdl-32652643

ABSTRACT

AIMS: The aim of this study was to characterize the pharmacokinetic/pharmacodynamic relationships of cortisol and the adrenal biomarkers 17-hydroxyprogesterone and androstenedione in children with congenital adrenal hyperplasia (CAH). METHODS: A nonlinear mixed-effect modelling approach was used to analyse cortisol, 17-hydroxyprogesterone and androstenedione concentrations obtained over 6 hours from children with CAH (n = 50). A circadian rhythm was evident and the model leveraged literature information on circadian rhythm in untreated children with CAH. Indirect response models were applied in which cortisol inhibited the production rate of all three compounds using an Imax model. RESULTS: Cortisol was characterized by a one-compartment model with apparent clearance and volume of distribution estimated at 22.9 L/h/70 kg and 41.1 L/70 kg, respectively. The IC50 values of cortisol concentrations for cortisol, 17-hydroxyprogesterone and androstenedione were estimated to be 1.36, 0.45 and 0.75 µg/dL, respectively. The inhibitory effect was found to be more potent on 17OHP than D4A, and the IC50 values were higher in salt-wasting subjects than simple virilizers. Production rates of cortisol, 17-hydroxyprogesterone and androstenedione were higher in simple-virilizer subjects. Half-lives of cortisol, 17-hydroxyprogesterone and androstenedione were 60, 47 and 77 minutes, respectively. CONCLUSION: Rapidly changing biomarker responses to cortisol concentrations highlight that single measurements provide volatile information about a child's disease control. Our model closely captured observed cortisol, 17-hydroxyprogesterone and androstenedione concentrations. It can be used to predict concentrations over 24 hours and allows many novel exposure metrics to be calculated, e.g., AUC, AUC-above-threshold, time-within-range, etc. Our long-range goal is to uncover dose-exposure-outcome relationships that clinicians can use in adjusting hydrocortisone dose and timing.


Subject(s)
Adrenal Hyperplasia, Congenital , Hydrocortisone , 17-alpha-Hydroxyprogesterone , Adrenal Hyperplasia, Congenital/drug therapy , Androstenedione , Biomarkers , Child , Humans
14.
Clin Pharmacol Ther ; 108(4): 766-769, 2020 10.
Article in English | MEDLINE | ID: mdl-32344449

ABSTRACT

Hydroxychloroquine is an antimalarial drug being tested as a potential treatment for the novel coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2. Although the efficacy of hydroxychloroquine for COVID-19 remains uncertain, it may serve as a potential prophylactic agent especially in those at high risk, such as healthcare workers, household contacts of infected patients, and the immunocompromised. Our aim was to identify possible hydroxychloroquine dosing regimens through simulation in those at high risk of infections by optimizing exposures above the in vitro generated half maximal effective concentration (EC50 ) and to help guide researchers in dose-selection for COVID-19 prophylactic studies. To maintain weekly troughs above EC50 in > 50% of subjects at steady-state in a pre-exposure prophylaxis setting, an 800 mg loading dose followed by 400 mg twice or 3 times weekly is required. In an exposure driven, post-exposure prophylaxis setting, 800 mg loading dose followed in 6 hours by 600 mg, then 600 mg daily for 4 more days achieved daily troughs above EC50 in > 50% subjects. These doses are higher than recommended for malaria chemoprophylaxis, and clinical trials are needed to establish safety and efficacy.


Subject(s)
Antimalarials/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Hydroxychloroquine/administration & dosage , Malaria/drug therapy , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pre-Exposure Prophylaxis/methods , Antimalarials/blood , COVID-19 , Coronavirus Infections/blood , Humans , Hydroxychloroquine/blood , Malaria/blood , Models, Biological , Pneumonia, Viral/blood , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...