Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 9183, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235716

ABSTRACT

The blood-brain barrier (BBB) regulates the traffic of molecules into the central nervous system (CNS) and also limits the drug delivery. Due to their flexible properties, liposomes are an attractive tool to deliver drugs across the BBB. We previously characterized gH625, a peptide derived from Herpes simplex virus 1. The present study investigates the efficiency of liposomes functionalized on their surface with gH625 to promote the brain uptake of neuroprotective peptide PACAP (pituitary adenylate cyclase-activating polypeptide). Using a rat in vitro BBB model, we showed that the liposomes preparations were non-toxic for the endothelial cells, as assessed by analysis of tight junction protein ZO1 organization and barrier integrity. Next, we found that gH625 improves the transfer of liposomes across endothelial cell monolayers, resulting in both low cellular uptake and increased transport of PACAP. Finally, in vivo results demonstrated that gH625 ameliorates the efficiency of liposomes to deliver PACAP to the mouse brain after intravenous administration. gH625-liposomes improve both PACAP reaching and crossing the BBB, as showed by the higher number of brain cells labelled with PACAP. gH625-liposomes represent a promising strategy to deliver therapeutic agents to CNS and to provide an effective imaging and diagnostic tool for the brain.


Subject(s)
Blood-Brain Barrier/drug effects , Drug Delivery Systems , Liposomes/pharmacokinetics , Peptides/pharmacokinetics , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacokinetics , Viral Envelope Proteins/pharmacokinetics , Administration, Intravenous , Animals , Biological Transport , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/metabolism , Mice , Pituitary Adenylate Cyclase-Activating Polypeptide/administration & dosage , Rats , Rats, Wistar
2.
Stem Cells Int ; 2017: 1478606, 2017.
Article in English | MEDLINE | ID: mdl-28698717

ABSTRACT

Stem cell-based therapies critically rely on selective cell migration toward pathological or injured areas. We previously demonstrated that human olfactory ectomesenchymal stem cells (OE-MSCs), derived from an adult olfactory lamina propria, migrate specifically toward an injured mouse hippocampus after transplantation in the cerebrospinal fluid and promote functional recoveries. However, the mechanisms controlling their recruitment and homing remain elusive. Using an in vitro model of blood-brain barrier (BBB) and secretome analysis, we observed that OE-MSCs produce numerous proteins allowing them to cross the endothelial wall. Then, pan-genomic DNA microarrays identified signaling molecules that lesioned mouse hippocampus overexpressed. Among the most upregulated cytokines, both recombinant SPP1/osteopontin and CCL2/MCP-1 stimulate OE-MSC migration whereas only CCL2 exerts a chemotactic effect. Additionally, OE-MSCs express SPP1 receptors but not the CCL2 cognate receptor, suggesting a CCR2-independent pathway through other CCR receptors. These results confirm that OE-MSCs can be attracted by chemotactic cytokines overexpressed in inflamed areas and demonstrate that CCL2 is an important factor that could promote OE-MSC engraftment, suggesting improvement for future clinical trials.

3.
FASEB J ; 31(5): 1807-1827, 2017 05.
Article in English | MEDLINE | ID: mdl-28108572

ABSTRACT

The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals (ldlr-/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.


Subject(s)
Antibodies/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Endocytosis/physiology , Receptors, LDL/metabolism , Animals , Biological Transport/physiology , Drug Delivery Systems/methods , Humans , Mice , Rats , Receptors, LDL/deficiency
4.
J Neuroinflammation ; 13(1): 290, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27832801

ABSTRACT

BACKGROUND: The heterogeneity of endothelial cell types underlies their remarkable ability to sub-specialize and provide specific requirements for a given vascular bed. Here, we compared rat microvascular endothelial cells (MECs) derived from the brain and spinal cord in both basal and inflammatory conditions. METHODS: We used whole rat genome microarrays to compare, at different time points, basal and TNF-α-induced gene expression of rat MECs from in vitro models of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). Validation at both messenger RNA (mRNA) and protein levels was performed on freshly extracted microvessels (MVs) from the brain and spinal cord (BMVs and SCMVs, respectively), as these were considered the closest in vivo tissues to cultured MECs. RESULTS: Most of the genes encoding adhesion/tight junction molecules and known endothelial markers were similarly expressed in brain and spinal cord MECs (BMECs and SCMECs, respectively). However, one striking finding was the higher expression of several Hox genes, which encode transcription factors involved in positional identity. The differential expression of Hoxa9 and Hoxb7 at the mRNA levels as well as protein levels was confirmed in BMVs and SCMVs. Although the TNF-α response was in general higher in BMECs than in SCMECs at 12 h, the opposite was observed at 48 h. Furthermore, we found that expression of Tnfrsf1a and Tnfrsf1b encoding the TNF receptor super-family member 1a/TNFR1 and 1b/TNFR2, respectively, were constitutively higher in BMVs compared to SCMVs. However, only Tnfrsf1b was induced in SCMECs in response to TNF-α at 24 and 48 h. CONCLUSIONS: Our results support a role for HOX members in defining the positional identities of MECs in vivo. Our data also suggest that the delayed transcriptional activation upon TNF-α treatment in SCMECs results from the requirement of the TNF-induced expression of Tnfrsf1b. In contrast, its high basal expression in BMECs might be sufficient to confer an immediate and efficient TNF-α response.


Subject(s)
Brain/cytology , Endothelial Cells/drug effects , Gene Expression/drug effects , Homeodomain Proteins/metabolism , Spinal Cord/cytology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cell Differentiation/drug effects , Cells, Cultured , Coculture Techniques , Cytokines/metabolism , Gene Expression Profiling , Homeodomain Proteins/genetics , Microarray Analysis , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , Time Factors
5.
J Vis Exp ; (88): e51278, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24998179

ABSTRACT

The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm x cm(2) on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10(-3) cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.


Subject(s)
Blood-Brain Barrier/cytology , Blood-Brain Barrier/metabolism , Cell Culture Techniques/methods , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Biological Transport, Active , Carbocyanines/chemistry , Carbocyanines/pharmacokinetics , Cell Membrane Permeability , Coculture Techniques , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Male , Models, Animal , Rats , Rats, Wistar , Reproducibility of Results , Rhodamine 123/chemistry , Rhodamine 123/pharmacokinetics
6.
Plant Cell ; 21(1): 301-17, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19155349

ABSTRACT

In the wild tomato Solanum habrochaites, the Sst2 locus on chromosome 8 is responsible for the biosynthesis of several class II sesquiterpene olefins by glandular trichomes. Analysis of a trichome-specific EST collection from S. habrochaites revealed two candidate genes for the synthesis of Sst2-associated sesquiterpenes. zFPS encodes a protein with homology to Z-isoprenyl pyrophosphate synthases and SBS (for Santalene and Bergamotene Synthase) encodes a terpene synthase with homology to kaurene synthases. Both genes were found to cosegregate with the Sst2 locus. Recombinant zFPS protein catalyzed the synthesis of Z,Z-FPP from isopentenylpyrophosphate (IPP) and dimethylallylpyrophosphate (DMAPP), while coincubation of zFPS and SBS with the same substrates yielded a mixture of olefins identical to the Sst2-associated sesquiterpenes, including (+)-alpha-santalene, (+)-endo-beta-bergamotene, and (-)-endo-alpha-bergamotene. In addition, headspace analysis of tobacco (Nicotiana sylvestris) plants expressing zFPS and SBS in glandular trichomes afforded the same mix of sesquiterpenes. Each of these proteins contains a putative plastid targeting sequence that mediates transport of a fused green fluorescent protein to the chloroplasts, suggesting that the biosynthesis of these sesquiterpenes uses IPP and DMAPP from the plastidic DXP pathway. These results provide novel insights into sesquiterpene biosynthesis and have general implications concerning sesquiterpene engineering in plants.


Subject(s)
Plant Proteins/metabolism , Polyisoprenyl Phosphates/metabolism , Sesquiterpenes/metabolism , Solanum/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Amino Acid Sequence , Chromosome Mapping , Cloning, Molecular , DNA, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Solanum/genetics , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...