Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 14(3)2022 03 08.
Article in English | MEDLINE | ID: mdl-35324697

ABSTRACT

Fusarium temperatum Scaufl. & Munaut is a newly described taxon belonging to the Fusarium fujikuroi species complex (FFSC) and a frequent causative factor of maize ear rot. The aim of the present study was to determine the responses to the disease in maize populations differing in endosperm features that were classified to flint, dent, and a group of plants with intermediate kernel characteristics. In inoculation studies, substantial variation of host response to the fungus was found among the tested maize types. The dent-type kernels contained significantly less amylose (28.27%) and exhibited significantly higher rates of infection (IFER = 2.10) and contamination by beauvericin (7.40 mg kg-1) than plants of the flint maize subpopulation. The study documents a significant positive correlation between the Fusarium ear rot intensity (IFER) and ergosterol content (the R value ranged from 0.396 in 2015 to 0.735 in 2018) and between IFER and the presence of beauvericin (the R value ranged from 0.364 in 2015 to 0.785 in 2017). The negative correlation between (IFER) and amylose content (ranging from R = -0.303 to R= -0.180) stresses the role of the endosperm starch composition in the kernel resistance to Fusarium ear rot. The conducted study indicated that the risk of kernel infection and contamination with fungal metabolites (beauvericin and ergosterol) was associated with the maize type kernels.


Subject(s)
Fusarium , Amylose/metabolism , Endosperm , Ergosterol , Fusarium/metabolism , Plant Diseases/microbiology , Starch/metabolism , Zea mays/microbiology
2.
Mol Plant Microbe Interact ; 34(2): 214-217, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33064593

ABSTRACT

Fusarium temperatum (Scaufl. & Munaut) is one of the most important fungal pathogens that cause ear and stalk rots in maize. In this study, we sequenced genomes of two F. temperatum isolates (KFI615 and KFI660) isolated from corn ears in Poland. A total of 110.3 and 116.3 million 100-nucleotide paired-end clean reads were obtained for KFI615 and KFI660, which were assembled into 20 and 18 scaffolds with an estimated genome size of 45.21 and 45.00 Mb, respectively. These genome sequences provide important resources for understanding pathogenicity and biology of the pathogens within the Fusarium fujikuroi complex.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fusarium , Genome, Fungal , Fusarium/genetics , Poland , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...