Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ann Parasitol ; 60(3): 215-20, 2014.
Article in English | MEDLINE | ID: mdl-25281819

ABSTRACT

The study aim was to compare the antagonistic interaction between saprotrophic soil fungi and embryonic development of geohelminths Toxocara canis and Ascaris suum. The experimental cultures were fertilized eggs of T.canis and A. suum incubated together with mycelium of strains: Fusarium culmorum, Metarhizium anisopliae,Paecilomyces fumosoroseus, Trichoderma viride and Trichothecium roseum. In the control cultures the eggs of both nematode species were incubated without fungi. The experiment was conducted at temp. 26°C for 60 days. Compared with the control, all of the tested species of fungi significantly extended the embryonic development of both T. canis and A. suum. Most inhibitory effect on the rate of embryonic development of T. canis and A. suum had three fungal species: P. fumosoreus, M. anisopliae and T. viride. Compared with the control, on the 60th day of incubation in the presence of each of the tested fungal species, a larger percentage (p<0.05) of morphological abnormalities was stated in developing embryos of T. canis (49­69%) than in A. suum (15.1­67.7%). Among the examined fungal species, only incubation with P. fumosoroseus resulted in significantly greater (p<0.05) incidence of embryonic malformations(embryopathies) in T. canis, as compared with A. suum. Also the percentage of dead larvae of T. canis in the control and in cultures with fungi (12% and 100%, respectively) was significantly higher in comparison with A. suum (0.5% and 10.3­36%, respectively). The highest percentage of non-viable larvae of A. suum was found in the presence of P.fumosoroseus, and the lowest in the presence of M. anisopliae. Findings may indicate that T. canis eggs are more sensitive to antagonistic interaction of the examined fungal strains than A. suum eggs.


Subject(s)
Ascaris suum/microbiology , Fungi/classification , Fungi/physiology , Toxocara canis/microbiology , Animals , Pest Control, Biological , Soil Microbiology
2.
Wiad Parazytol ; 55(1): 9-17, 2009.
Article in Polish | MEDLINE | ID: mdl-19579779

ABSTRACT

The soils ecosystem plays an important role in the epidemiology of geohelminth diseases of humans and animals. Soil contamination with ova of the parasitic geohelminths represents a global public health-hazard issue. Biological agents have been thought to control the infective forms of parasites present in the soil. Biocontrol of geohelminths represents an alternative to pesticides (i.e., nematicides), which are not efficient in killing infective nematode forms and, additionally, result in the environment pollution and long-term disturbances in the soil ecosystem homeostasis. The degree of the inhibiting effect of soil saprotrophic fungi on geohelminth embryonic development varies and depends on the species. A number of fungi cause various morphological disorders in the embryos of developing parasitic nematodes, but also have an ovicidal effect. Although the nature of the antagonism between fungi and other living organisms has not been fully explained, it is certain that mycotoxins and fungal enzymes constitute its important components. Considering the studies carried out so far, the antagonistic effect of mold fungi against the infective stages of geohelminths can be fully recommended as a real control factor, especially as these saprotrophs represent a natural factor within the soil environment, that is of particular biochemical activity.


Subject(s)
Fungi/physiology , Nematoda/microbiology , Pest Control, Biological/methods , Soil Microbiology , Soil/parasitology , Animals , Host-Parasite Interactions , Humans , Nematoda/embryology , Nematode Infections/prevention & control , Nematode Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...