Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37317222

ABSTRACT

Abiotic and biotic stresses such as salt stress and fungal infections significantly affect plant growth and productivity, leading to reduced crop yield. Traditional methods of managing stress factors, such as developing resistant varieties, chemical fertilizers, and pesticides, have shown limited success in the presence of combined biotic and abiotic stress factors. Halotolerant bacteria found in saline environments have potential as plant promoters under stressful conditions. These microorganisms produce bioactive molecules and plant growth regulators, making them a promising agent for enhancing soil fertility, improving plant resistance to adversities, and increasing crop production. This review highlights the capability of plant-growth-promoting halobacteria (PGPH) to stimulate plant growth in non-saline conditions, strengthen plant tolerance and resistance to biotic and abiotic stressors, and sustain soil fertility. The major attempted points are: (i) the various abiotic and biotic challenges that limit agriculture sustainability and food safety, (ii) the mechanisms employed by PGPH to promote plant tolerance and resistance to both biotic and abiotic stressors, (iii) the important role played by PGPH in the recovery and remediation of agricultural affected soils, and (iv) the concerns and limitations of using PGHB as an innovative approach to boost crop production and food security.

2.
Ecotoxicol Environ Saf ; 243: 113969, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35969983

ABSTRACT

Soil contamination with cadmium (Cd) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Cd-tolerance in cauliflower (Brassica oleracea L.). The present study was conducted using four different genotypes of B. oleracea named as FD-3, FD-4, FD-2 and Ceilo Blanco which were subjected to the Cd stress at various concentrations i.e., 0, 5, 10 and 20 µM with or without the application of NO i.e., 0.10 mM in the sand containing nutrient Hoagland's solution. Our results illustrated that the increasing levels of Cd in the sand, significantly (P < 0.05) decreased shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, germination percentage, germination index, mean germination time, time to 50% germination, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents in all genotypes of B. oleracea. The concentration of malondialdehyde (MDA) and Cd accumulation (roots and shoots) increased significantly (P < 0.05) under the increasing levels of Cd in all genotypes of B. oleracea while antioxidant (enzymatic or non-enzymatic) capacity and nutritional status of the plants was decreased with varying levels of Cd in the sand. From all studied genotypes of B. oleracea, Ceilo Blanco and FD-4 was found to be most sensitive species to the Cd stress under the same levels of the Cd in the medium while FD-2 and FD-3 showed more tolerance to the Cd stress compared to all other genotypes of B. oleracea. Although, toxic effect of Cd in the sand can overcome by the application of NO which not only increased plant growth and nutrients accumulation but also decreased the oxidative damage to the membranous bounded organelles and also Cd accumulation in various parts of the plants in all genotypes of B. oleracea. Hence, it was concluded that application of NO can overcome Cd toxicity in B. oleracea by maintaining the growth regulation and nutritional status of the plant and overcome oxidative damage induced by Cd toxicity in all genotypes of B. oleracea.


Subject(s)
Brassica , Soil Pollutants , Antioxidants/pharmacology , Brassica/genetics , Cadmium/toxicity , Chlorophyll A , Nitric Oxide/pharmacology , Plant Roots , Sand , Soil Pollutants/toxicity
3.
Plants (Basel) ; 11(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35684174

ABSTRACT

The excessive use of nickel (Ni) in manufacturing and various industries has made Ni a serious pollutant in the past few decades. As a micronutrient, Ni is crucial for plant growth at low concentrations, but at higher concentrations, it can hamper growth. We evaluated the effects of Ni concentrations on nitrate (NO3-) and ammonium (NH4+) concentrations, and nitrogen metabolism enzyme activity in rice seedlings grown in hydroponic systems, using different Ni concentrations. A Ni concentration of 200 µM significantly decreased the NO3- concentration in rice leaves, as well as the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthetase (GOGAT), respectively, when compared to the control. By contrast, the NH4+ concentration and glutamate dehydrogenase (GDH) activity both increased markedly by 48% and 46%, respectively, compared with the control. Furthermore, the activity of most active aminotransferases, including glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT), was inhibited by 48% and 36%, respectively, in comparison with the control. The results indicate that Ni toxicity causes the enzymes involved in N assimilation to desynchronize, ultimately negatively impacting the overall plant growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...