Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(3-1): 034401, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632795

ABSTRACT

The diffusive ion current is insufficient to explain the fast saltatory conduction observed in myelinated axons and in pain-sensing C fibers in the human nervous system, where the stimulus signal exhibits a velocity two orders of magnitude greater than the upper limit of ion diffusion velocity, even when the diffusion is accelerated by myelin, as in the discrete cable model including the Hodgkin-Huxley mechanism. The agreement with observations has been achieved in a wave-type model of stimulus signal kinetics via synchronized ion local density oscillations propagating as a wave in axons periodically corrugated by myelin segments in myelinated axons, or by periodically distributed rafts with clusters of Na^{+} channels in C fibers. The resulting so-called plasmon-polariton model for saltatory conduction reveals also the specific role of myelin, which is different from what was previously thought. This can be important for identifying a new target for the future treatment of demyelination diseases.


Subject(s)
Myelin Sheath , Neural Conduction , Humans , Neural Conduction/physiology , Myelin Sheath/physiology , Axons/metabolism , Ion Transport , Computer Simulation , Action Potentials/physiology
2.
Eur Biophys J ; 49(5): 343-360, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32588093

ABSTRACT

We present a new wave-type model of saltatory conduction in myelinated axons. Poor conductivity in the neuron cytosol limits electrical current signal velocity according to cable theory, to 1-3 m/s, whereas saltatory conduction occurs with a velocity of 100-300 m/s. We propose a wave-type mechanism for saltatory conduction in the form of the kinetics of an ionic plasmon-polariton being the hybrid of the electro-magnetic wave and of the synchronized ionic plasma oscillations in myelinated segments along an axon. The model agrees with observations and allows for description of the regulatory role of myelin. It explains also the mechanism of conduction deficiency in demyelination syndromes such as multiple sclerosis. The recently observed micro-saltatory conduction in ultrathin unmyelinated C fibers with periodic ion gate clusters is also explained.


Subject(s)
Axons/metabolism , Models, Neurological , Myelin Sheath/physiology , Nerve Fibers, Unmyelinated/physiology , Action Potentials
3.
Nanomaterials (Basel) ; 9(1)2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30577518

ABSTRACT

We demonstrate that the direct application of numerical packets like Comsol to plasmonic effect in solar cells metallically modified in nano-scale may be strongly inaccurate if quantum corrections are neglected. The near-field coupling of surface plasmons in metallic nanoparticles deposited on the top of a solar cell with band electrons in a semiconductor substrate strongly enhances the damping of plasmons in metallic components, which is not accounted for in standard numerical packets using the Drude type dielectric function for metal (taken from measurements in bulk or in thin layers) as the prerequisite for the numerical e-m field calculus. Inclusion of the proper corrections to plasmon damping causes additional enhancement of the plasmon-induced photo-effect efficiency growth of a metalized photo-diode by ten percent, at least, in comparison to only effect induced by the electric field concentration near metallic nanoparticles. This happens to be consistent with the experimental observations which cannot be explained by only local increases of the electrical field near the curvature of metallic nanoparticles determined by a finite-element solution of the Maxwell⁻Fresnel boundary problem as given by a numerical system like Comsol. The proper damping rate for plasmons can be identified by application of the Fermi Golden Rule approach to the plasmon-band electron coupling. We demonstrate this effect including the material and size dependence in two types of solar cells, multi-crystalline Si and CIGS (copper-indium-gallium-diselenide) as idealized photo-diode semiconductor substrate modified by various metallic nano-particles, in comparison to the experimental data and Comsol simulation.

4.
J Phys Condens Matter ; 30(36): 365601, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30051880

ABSTRACT

We put forward possible wave functions for quantum Hall states in the lowest Landau level. These were deduced from the topological approach based on the relation between braid groups and the quantum statistics, as well as the commensurability condition unavoidable for collective states in magnetic fields. In this paper we demonstrate that the [Formula: see text]-field imposes restrictions on braid trajectories (i.e. elements of the full braid group). This results in the appearance of cyclotron subgroups, instead of the full braid group, for certain filling factors. The fermion representation of cyclotron subgroups defines transformations of wave functions in the quantum Hall regime. Hence, it sets quantum statistics (transformations of [Formula: see text] under exchanges of arguments), which is unavoidable for collective states (in compliance with the framework of Feynman's path integrals). Finally, the topological approach allows to define the hierarchy of fillings in the lowest Landau level, which agree with the hierarchy observed in quantum Hall devices (i.e. in transport measurements). The symmetry of a many-body wave function (i.e. quantum statistics) is always determined by a 1D unitary representation of the system's braid group. Using this topologically-originated property, we demonstrate that many-body wave functions for selected fillings of the lowest Landau level may not be purely antisymmetric. Only systems composed of fermions are investigated. Additionally, we present Monte Carlo calculations in a disc geometry, which remain in a nice agreement with predictions of exact diagonalizations (expected values of potential energy and pair distribution functions are presented). No boundary potential is assumed.

5.
R Soc Open Sci ; 4(3): 160849, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28405373

ABSTRACT

Nature has always served as an inspiration for scientists, helping them to solve a large diversity of technical problems. In our case, we are interested in the directional transport of oily liquids and as a model for this application we used the flat bug Dysodius lunatus. In this report, we present arrays of drops looking like polymer microstructures produced by the two-photon polymerization technique that mimic the micro-ornamentation from the bug's cuticle. A good directionality of oil transport was achieved, directly controlled by the direction of the pointed microstructures at the surface. If the tips of the drop-like microstructures are pointing towards the left side, the liquid front moves to the right and vice versa. Similar effects could be expected for the transport of oily lubricants. These results could, therefore, be interesting for applications in friction and wear reduction.

6.
Proc Math Phys Eng Sci ; 473(2197): 20160758, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28265199

ABSTRACT

In this paper, we recall the topological approach to quantum Hall effects. We note that, in the presence of a magnetic field, trajectories representing elements of the system's braid group are of cyclotron orbit type. In two-dimensional spaces, this leads to the restriction of the full braid group, π1(Ω)-loopless generators (exchanges of MN coordinates or classical particles) are unenforceable. As a result, the identification of a possible Hall-like state comes down to the identification of a possible subgroup of π1(Ω). The latter follows from the connection between the one-dimensional unitary representation of the system's braid group and particle statistics (unavoidable for any correlated state). In this work, we implement the topological approach to derive the lowest Landau-level pyramid of fillings. We point out that it contains all mysterious odd-denominator filling factors-like [Formula: see text], [Formula: see text] or [Formula: see text]-not trivial to explain within the standard picture. We also introduce, explicitly, cyclotron subgroup generators for all derived fractions. Preliminary results on wave functions, supported by several Monte Carlo calculations, are presented. It is worth emphasizing that not all proposed many-body functions are purely antisymmetric-they, however, transform in agreement with the scalar representations of the system's braid group. The latter is enforced by standard quantization methods.

7.
J Biomed Mater Res A ; 105(3): 891-899, 2017 03.
Article in English | MEDLINE | ID: mdl-27813317

ABSTRACT

The main aim of this work was to stimulate bone-forming cells to produce three-dimensional networks of mineralized proteins such as those occurring in bones. This was achieved by a novel approach using a specific type of mesenchymal progenitor cells (i.e., primary fibroblast cells from human hair roots) seeded on to polymer scaffolds. We wrote polymer microstructures with one or more levels of quadratic pores on to a flexible substrate by means of two-photon polymerization using a Ti-sapphire femtosecond laser focused into a liquid acrylate-based resin containing a photoinitiator. Progenitor cells, differentiated into an osteogenic lineage by the use of medium supplemented with biochemical stimuli, can be seeded on to the hydrophilic three-dimensional scaffolds. Due to confinement to the microstructures and/or mechanical interaction with the scaffold, the cells are stimulated to produce high amounts of calcium-binding proteins, such as collagen type I, and show an increased activation of the actin cytoskeleton. The best results were obtained for quadratic pore sizes of 35 µm: the pore volumes become almost filled with both cells in close contact with the walls of the structure and with extracellular matrix material produced by the cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 891-899, 2017.


Subject(s)
Cell Differentiation , Extracellular Matrix/chemistry , Fibroblasts/metabolism , Hair Follicle/metabolism , Osteoblasts/metabolism , Tissue Scaffolds/chemistry , Female , Fibroblasts/cytology , Hair Follicle/cytology , Humans , Male , Osteoblasts/cytology , Photochemical Processes
8.
Proc Math Phys Eng Sci ; 472(2186): 20150330, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27118883

ABSTRACT

The commensurability condition is applied to determine the hierarchy of fractional filling of Landau levels for fractional quantum Hall effect (FQHE) in monolayer and bilayer graphene. Good agreement with experimental data is achieved. The presence of even-denominator filling fractions in the hierarchy of the FQHE in bilayer graphene is explained, including the state at [Formula: see text].

9.
J Phys Condens Matter ; 22(35): 355602, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-21403293

ABSTRACT

Although they describe properties of 2D Hall systems in the fractional quantum regime well, composite fermions suffer from the unexplained character of the localized magnetic field flux-tubes attached to each particle in order to reproduce the Laughlin correlations via Aharonov-Bohm phase shifts. The identification of the cyclotron trajectories of 2D charged particles as accessible classical trajectories within the braid group approach at the magnetic field presence, allows, however, for the avoidance of the construction with fluxes. We introduce cyclotron braid subgroups for charged 2D systems at the fractional Landau-level filling associated in a more natural way with composite fermions without invoking field flux-tubes. The Aharonov-Bohm phase shifts caused by fluxes are replaced with the phase gain due to multi-loop cyclotron trajectories unavoidably occurring at the fractional filling of 1/p (p is an odd integer). Another approach to composite particles, using so-called vortices, is also discussed from the point of view of the cyclotron braid group description (for both odd and even p integers).

10.
J Microsc ; 234(3): 251-4, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19493102

ABSTRACT

We report here the development of a method for holding the focal plane in a fluorescence-based biochip scanner. The fast read-out of large (multiple cm(2)) glass slides as used in modern chip technology imposes severe constraints on the focal system. The limited focal depth of high-NA objectives together with the demand for single-molecule sensitivity challenges traditional focus-hold systems. Various long- and short-term effects disturb the often multiple hour-long data-acquisitioning process and cause blurred or unusable image data. Traditional focus-hold systems were often limited in terms of range, reaction time, sensitivity or demanded a large number of additional components. Our system uses the back-reflected illumination beam always present in total internal reflection fluorescence microscopy to generate an error proportional electrical signal, which in turn drives an actuator correcting the objective-sample distance. The latter consists of a fast but range-limited piezo drive attached to the objective and a slower motor coupled to the microscope's z-drive. With this combination, fast reaction times and virtually unlimited correction distances are possible. We show the applicability by scanning DNA microarrays on 27 x 18-mm(2) glass slides with single-molecule sensitivity over the whole array. Single-fluorescence dyes are imaged as diffraction-limited spots.


Subject(s)
Data Collection/methods , Fluorescence , Oligonucleotide Array Sequence Analysis/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...