Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Control Hosp Epidemiol ; 43(12): 1790-1795, 2022 12.
Article in English | MEDLINE | ID: mdl-34903308

ABSTRACT

BACKGROUND: Healthcare workers (HCWs) not adhering to physical distancing recommendations is a risk factor for acquisition of severe acute respiratory coronavirus virus 2 (SARS-CoV-2). The study objective was to assess the impact of interventions to improve HCW physical distancing on actual distance between HCWs in a real-life setting. METHODS: HCWs voluntarily wore proximity beacons to measure the number and intensity of physical distancing interactions between each other in a pediatric intensive care unit. We compared interactions before and after implementing a bundle of interventions including changes to the layout of workstations, cognitive aids, and individual feedback from wearable proximity beacons. RESULTS: Overall, we recorded 10,788 interactions within 6 feet (∼2 m) and lasting >5 seconds. The number of HCWs wearing beacons fluctuated daily and increased over the study period. On average, 13 beacons were worn daily (32% of possible staff; range, 2-32 per day). We recorded 3,218 interactions before the interventions and 7,570 interactions after the interventions began. Using regression analysis accounting for the maximum number of potential interactions if all staff had worn beacons on a given day, there was a 1% decline in the number of interactions per possible interactions in the postintervention period (incident rate ratio, 0.99; 95% confidence interval, 0.98-1.00; P = .02) with fewer interactions occurring at nursing stations, in workrooms and during morning rounds. CONCLUSIONS: Using quantitative data from wearable proximity beacons, we found an overall small decline in interactions within 6 feet between HCWs in a busy intensive care unit after a multifaceted bundle of interventions was implemented to improve physical distancing.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Physical Distancing , COVID-19/prevention & control , Health Personnel , Intensive Care Units, Pediatric
2.
JAMIA Open ; 4(4): ooab095, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34926997

ABSTRACT

OBJECTIVE: Despite the importance of physical distancing in reducing SARS-CoV-2 transmission, this practice is challenging in healthcare. We piloted use of wearable proximity beacons among healthcare workers (HCWs) in an inpatient unit to highlight considerations for future use of trackable technologies in healthcare settings. MATERIALS AND METHODS: We performed a feasibility pilot study in a non-COVID adult medical unit from September 28 to October 28, 2020. HCWs wore wearable proximity beacons, and interactions defined as <6 feet for ≥5 s were recorded. Validation was performed using direct observations. RESULTS: A total of 6172 close proximity interactions were recorded, and with the removal of 2033 false-positive interactions, 4139 remained. The highest proportion of interactions occurred between 7:00 Am-9:00 Am. Direct observations of HCWs substantiated these findings. DISCUSSION: This pilot study showed that wearable beacons can be used to monitor and quantify HCW interactions in inpatient settings. CONCLUSION: Technology can be used to track HCW physical distancing.

3.
PLoS One ; 8(5): e64363, 2013.
Article in English | MEDLINE | ID: mdl-23741319

ABSTRACT

Reengineering protein surfaces to exhibit high net charge, referred to as "supercharging", can improve reversibility of unfolding by preventing aggregation of partially unfolded states. Incorporation of charged side chains should be optimized while considering structural and energetic consequences, as numerous mutations and accumulation of like-charges can also destabilize the native state. A previously demonstrated approach deterministically mutates flexible polar residues (amino acids DERKNQ) with the fewest average neighboring atoms per side chain atom (AvNAPSA). Our approach uses Rosetta-based energy calculations to choose the surface mutations. Both protocols are available for use through the ROSIE web server. The automated Rosetta and AvNAPSA approaches for supercharging choose dissimilar mutations, raising an interesting division in surface charging strategy. Rosetta-supercharged variants of GFP (RscG) ranging from -11 to -61 and +7 to +58 were experimentally tested, and for comparison, we re-tested the previously developed AvNAPSA-supercharged variants of GFP (AscG) with +36 and -30 net charge. Mid-charge variants demonstrated ∼3-fold improvement in refolding with retention of stability. However, as we pushed to higher net charges, expression and soluble yield decreased, indicating that net charge or mutational load may be limiting factors. Interestingly, the two different approaches resulted in GFP variants with similar refolding properties. Our results show that there are multiple sets of residues that can be mutated to successfully supercharge a protein, and combining alternative supercharge protocols with experimental testing can be an effective approach for charge-based improvement to refolding.


Subject(s)
Amino Acids/chemistry , Green Fluorescent Proteins/chemistry , Protein Engineering , Software , Amino Acid Sequence , Amino Acids/genetics , Animals , Cnidaria , Green Fluorescent Proteins/genetics , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Mutation , Protein Conformation , Protein Stability , Protein Unfolding , Static Electricity , Thermodynamics
4.
Methods Enzymol ; 523: 109-43, 2013.
Article in English | MEDLINE | ID: mdl-23422428

ABSTRACT

Accurate energy functions are critical to macromolecular modeling and design. We describe new tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate the application of these tools to the improvement of the Rosetta energy function. The feature analysis tool identifies discrepancies between structures deposited in the PDB and low-energy structures generated by Rosetta; these likely arise from inaccuracies in the energy function. The optE tool optimizes the weights on the different components of the energy function by maximizing the recapitulation of a wide range of experimental observations. We use the tools to examine three proposed modifications to the Rosetta energy function: improving the unfolded state energy model (reference energies), using bicubic spline interpolation to generate knowledge-based torisonal potentials, and incorporating the recently developed Dunbrack 2010 rotamer library (Shapovalov & Dunbrack, 2011).


Subject(s)
Macromolecular Substances/chemistry , Algorithms , Protein Conformation , Software
5.
Protein Eng Des Sel ; 26(4): 283-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23341643

ABSTRACT

We have developed a protocol for identifying proteins that are predisposed to bind linear epitopes on target proteins of interest. The protocol searches through the protein database for proteins (scaffolds) that are bound to peptides with sequences similar to accessible, linear epitopes on the target protein. The sequence match is considered more significant if residues calculated to be important in the scaffold-peptide interaction are present in the target epitope. The crystal structure of the scaffold-peptide complex is then used as a template for creating a model of the scaffold bound to the target epitope. This model can then be used in conjunction with sequence optimization algorithms or directed evolution methods to search for scaffold mutations that further increase affinity for the target protein. To test the applicability of this approach we targeted three disease-causing proteins: a tuberculosis virulence factor (TVF), the apical membrane antigen (AMA) from malaria, and hemagglutinin from influenza. In each case the best scoring scaffold was tested, and binders with Kds equal to 37 µM and 50 nM for TVF and AMA, respectively, were identified. A web server (http://rosettadesign.med.unc.edu/scaffold/) has been created for performing the scaffold search process with user-defined target sequences.


Subject(s)
Epitopes/chemistry , Proteins/chemistry , Proteins/immunology , Algorithms , Computational Biology , Crystallography, X-Ray , Databases, Protein , Epitope Mapping , Epitopes/metabolism , Humans , Mutation , Protein Binding , Protein Conformation , Protein Transport , Proteins/isolation & purification , Sequence Analysis, Protein
6.
Proteins ; 80(3): 825-38, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22223219

ABSTRACT

De novo protein design requires the identification of amino-acid sequences that favor the target-folded conformation and are soluble in water. One strategy for promoting solubility is to disallow hydrophobic residues on the protein surface during design. However, naturally occurring proteins often have hydrophobic amino acids on their surface that contribute to protein stability via the partial burial of hydrophobic surface area or play a key role in the formation of protein-protein interactions. A less restrictive approach for surface design that is used by the modeling program Rosetta is to parameterize the energy function so that the number of hydrophobic amino acids designed on the protein surface is similar to what is observed in naturally occurring monomeric proteins. Previous studies with Rosetta have shown that this limits surface hydrophobics to the naturally occurring frequency (∼28%), but that it does not prevent the formation of hydrophobic patches that are considerably larger than those observed in naturally occurring proteins. Here, we describe a new score term that explicitly detects and penalizes the formation of hydrophobic patches during computational protein design. With the new term, we are able to design protein surfaces that include hydrophobic amino acids at naturally occurring frequencies, but do not have large hydrophobic patches. By adjusting the strength of the new score term, the emphasis of surface redesigns can be switched between maintaining solubility and maximizing folding free energy.


Subject(s)
Proteins/chemistry , Databases, Protein , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Stability , Protein Unfolding , Solubility , Thermodynamics
7.
PLoS One ; 6(7): e20937, 2011.
Article in English | MEDLINE | ID: mdl-21754981

ABSTRACT

Some protein design tasks cannot be modeled by the traditional single state design strategy of finding a sequence that is optimal for a single fixed backbone. Such cases require multistate design, where a single sequence is threaded onto multiple backbones (states) and evaluated for its strengths and weaknesses on each backbone. For example, to design a protein that can switch between two specific conformations, it is necessary to to find a sequence that is compatible with both backbone conformations. We present in this paper a generic implementation of multistate design that is suited for a wide range of protein design tasks and demonstrate in silico its capabilities at two design tasks: one of redesigning an obligate homodimer into an obligate heterodimer such that the new monomers would not homodimerize, and one of redesigning a promiscuous interface to bind to only a single partner and to no longer bind the rest of its partners. Both tasks contained negative design in that multistate design was asked to find sequences that would produce high energies for several of the states being modeled. Success at negative design was assessed by computationally redocking the undesired protein-pair interactions; we found that multistate design's accuracy improved as the diversity of conformations for the undesired protein-pair interactions increased. The paper concludes with a discussion of the pitfalls of negative design, which has proven considerably more challenging than positive design.


Subject(s)
Algorithms , Computational Biology/methods , Protein Conformation , Proteins/chemistry , Amino Acid Sequence , Molecular Sequence Data , Protein Multimerization , Thermodynamics
8.
Methods Enzymol ; 487: 545-74, 2011.
Article in English | MEDLINE | ID: mdl-21187238

ABSTRACT

We have recently completed a full re-architecturing of the ROSETTA molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy-to-use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as ROSETTA3 and is freely available for academic use. At the time of its release, it contained 470,000 lines of code. Counting currently unpublished protocols at the time of this writing, the source includes 1,285,000 lines. Its rapid growth is a testament to its ease of use. This chapter describes the requirements for our new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform.


Subject(s)
Computer Simulation , Macromolecular Substances/chemistry , Models, Molecular , Software , DNA/chemistry
9.
J Biol Chem ; 282(35): 25487-92, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17591778

ABSTRACT

Polyglutamine (polyQ) repeat disorders are caused by the expansion of CAG tracts in certain genes, resulting in transcription of proteins with abnormally long polyQ inserts. When these inserts expand beyond 35-45 glutamines, affected proteins form toxic aggregates, leading to neuron death. Chymotrypsin inhibitor 2 (CI2) with an inserted glutamine repeat has previously been used to model polyQ-mediated aggregation in vitro. However, polyQ insertion lengths in these studies have been kept below the pathogenic threshold. We perform molecular dynamics simulations to study monomer folding dynamics and dimer formation in CI2-polyQ chimeras with insertion lengths of up to 80 glutamines. Our model recapitulates the experimental results of previous studies of chimeric CI2 proteins, showing high folding cooperativity of monomers as well as protein association via domain swapping. Surprisingly, for chimeras with insertion lengths above the pathogenic threshold, monomer folding cooperativity decreases and the dominant mode for dimer formation becomes interglutamine hydrogen bonding. These results support a mechanism for pathogenic polyQ-mediated aggregation, in which expanded polyQ tracts destabilize affected proteins and promote the formation of partially unfolded intermediates. These unfolded intermediates form aggregates through associations by interglutamine interactions.


Subject(s)
Models, Molecular , Peptides/chemistry , Plant Proteins/chemistry , Protein Folding , Recombinant Fusion Proteins/chemistry , Trinucleotide Repeat Expansion , Animals , Cell Death , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Humans , Neurons/metabolism , Neurons/pathology , Peptides/genetics , Peptides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...