Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 472(2186): 20150330, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27118883

ABSTRACT

The commensurability condition is applied to determine the hierarchy of fractional filling of Landau levels for fractional quantum Hall effect (FQHE) in monolayer and bilayer graphene. Good agreement with experimental data is achieved. The presence of even-denominator filling fractions in the hierarchy of the FQHE in bilayer graphene is explained, including the state at [Formula: see text].

2.
J Phys Condens Matter ; 22(35): 355602, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-21403293

ABSTRACT

Although they describe properties of 2D Hall systems in the fractional quantum regime well, composite fermions suffer from the unexplained character of the localized magnetic field flux-tubes attached to each particle in order to reproduce the Laughlin correlations via Aharonov-Bohm phase shifts. The identification of the cyclotron trajectories of 2D charged particles as accessible classical trajectories within the braid group approach at the magnetic field presence, allows, however, for the avoidance of the construction with fluxes. We introduce cyclotron braid subgroups for charged 2D systems at the fractional Landau-level filling associated in a more natural way with composite fermions without invoking field flux-tubes. The Aharonov-Bohm phase shifts caused by fluxes are replaced with the phase gain due to multi-loop cyclotron trajectories unavoidably occurring at the fractional filling of 1/p (p is an odd integer). Another approach to composite particles, using so-called vortices, is also discussed from the point of view of the cyclotron braid group description (for both odd and even p integers).

3.
SELECTION OF CITATIONS
SEARCH DETAIL
...