Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37367004

ABSTRACT

The present study reports the development and application of a rapid, low-cost in-situ method for the quantification of tartrazine in carbonated beverages using a smartphone-based colorimetric device with molecularly imprinted polymer (MIP). The MIP was synthesized using the free radical precipitation method with acrylamide (AC) as the functional monomer, N,N'-methylenebisacrylamide (NMBA) as the cross linker, and potassium persulfate (KPS) as radical initiator. The smartphone (RadesPhone)-operated rapid analysis device proposed in this study has dimensions of 10 × 10 × 15 cm and is illuminated internally by light emitting diode (LED) lights with intensity of 170 lux. The analytical methodology involved the use of a smartphone camera to capture images of MIP at various tartrazine concentrations, and the subsequent application of the Image-J software to calculate the red, green, blue (RGB) color values and hue, saturation, value (HSV) values from these images. A multivariate calibration analysis of tartrazine in the range of 0 to 30 mg/L was performed, and the optimum working range was determined to be 0 to 20 mg/L using five principal components and a limit of detection (LOD) of 1.2 mg/L was obtained. Repeatability analysis of tartrazine solutions with concentrations of 4, 8, and 15 mg/L (n = 10) showed a coefficient of variation (% RSD) of less than 6%. The proposed technique was applied to the analysis of five Peruvian soda drinks and the results were compared with the UHPLC reference method. The proposed technique showed a relative error between 6% and 16% and % RSD lower than 6.3%. The results of this study demonstrate that the smartphone-based device is a suitable analytical tool that offers an on-site, cost-effective, and rapid alternative for the quantification of tartrazine in soda drinks. This color analysis device can be used in other molecularly imprinted polymer systems and offers a wide range of possibilities for the detection and quantification of compounds in various industrial and environmental matrices that generate a color change in the MIP matrix.


Subject(s)
Molecular Imprinting , Polymers , Molecularly Imprinted Polymers , Colorimetry , Tartrazine , Smartphone , Molecular Imprinting/methods
2.
Int J Biol Macromol ; 129: 1056-1068, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30240714

ABSTRACT

It has been synthesized, characterized and tested a new biomaterial AlgS (sodium alginate functionalized with cysteine) to remove Pb(II) in aqueous media. The maximum Pb(II)-sorption capacity of AlgS (Qmax = 770 mg·g-1) is between almost two and nine times higher than other alginate-materials reported in the literature. Techniques, such as TGA/DSC, SEM/EDS, BET, FTIR, UV-Vis, XRD and 13C solid state-NMR have been used to study the chemical-modification of alginate at oxidation and aminofication stages. The formation of the imine intermediate (C=N), after 24 h of reaction was identified by a UV band at 348 nm. Typical IR-bands of AlgS were identified at 2970, 955, 949 and 1253 cm-1 which are associated to CH, SPb, SH and CN stretching vibrations, respectively. 13C solid state-NMR spectra of AlgS, show peaks at 33-38 ppm and 55-60 ppm associate to δ (HS-CH2-) of cysteine and δ (CN) respectively. The ΔH° and ΔG° negative values for Pb(II) sorption indicate that it is an exothermic process and occur spontaneously. Finally, it was found that the Pb(II) sorption on AlgS is significantly affected by the presence of cationic (Na+, Mg2+ and Al3+) and anionic (Cl-, NO3-) co-ions.


Subject(s)
Alginates/chemistry , Cysteine/chemistry , Lead/chemistry , Lead/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water/chemistry , Adsorption , Amination , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Temperature
3.
Int J Biol Macromol ; 120(Pt B): 2259-2270, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30142365

ABSTRACT

A new material (AlgOx-TSC), based on alginate (Alg) chemically modified with thiosemicarbazide (TSC), has been synthesized and tested as an effective biomaterial to remove Pb(II) and Cd(II) ions in aqueous solutions. The synthesis was carried out by controlling the following steps, i/partial oxidation process of alginate in NaIO4 to obtain AlgOx, ii/reacting of AlgOx, at 40-45 °C, with TSC in NaBH4. AlgOx-TSC has been characterized by Field Emission Scanning Electron Microscopy (FESEM/EDS), Fourier Transform Infrared Spectroscopy (ATR-IR), solid state 13C NMR spectroscopy and Point of Zero Charge (pHPZC) measuremenmts. In order to enhance the sorption process, the effect of contact time, sorbent dosage, initial concentration and reusability of the novel sorbent were investigated becoming the AlgOx-TSC a promising material capable of removing high concentrations of heavy metal ions such as Pb(II) (up to 950 mg/g at pH 3) and Cd(II) (up to 300 mg/g at pH 7) in aqueous solutions.


Subject(s)
Alginates/chemistry , Cadmium/chemistry , Cadmium/isolation & purification , Lead/chemistry , Lead/isolation & purification , Semicarbazides/chemistry , Water/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Solutions , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...