Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 29(7): 1887-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26193171

ABSTRACT

Liver damage occurred in some patients who took troglitazone (TGZ) for type II diabetes. The 2,4-thiazolidinedione (TZD) ring in TGZ's structure has been implicated in its hepatotoxicity. To further examine the potential role of a TZD ring in toxicity we used HepG2 cells to evaluate two series of compounds containing different cyclic imides. N-phenyl analogues comprised 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT); 3-(3,5-dichlorophenyl)-2,4-oxazolidinedione (DCPO) and N-(3,5-dichlorophenyl)succinimide (NDPS). Benzylic compounds, which closely resemble TGZ, included 5-(3,5-dichlorophenylmethyl)-2,4-thiazolidinedione (DCPMT); 5-(4-methoxyphenylmethyl)-2,4-thiazolidinedione (MPMT); 5-(4-methoxyphenylmethylene)-2,4-thiazolidinedione (MPMT-I); 5-(4-methoxyphenylmethyl)-2,4-oxazolidinedione (MPMO); 3-(4-methoxyphenylmethyl)succinimide (MPMS) and 3-(4-methoxyphenylmethylene)succinimide (MPMS-I). Cytotoxicity was assessed using the MTS assay after incubating the compounds (0-250µM) with HepG2 cells for 24h. Only certain TZD derivatives (TGZ, DCPT, DCPMT and MPMT-I) markedly decreased cell viability, whereas MPMT had low toxicity. In contrast, analogues without a TZD ring (DCPO, NDPS, MPMO, MPMS and MPMS-I) were not cytotoxic. These findings suggest that a TZD ring may be an important determinant of toxicity, although different structural features, chemical stability, cellular uptake or metabolism, etc., may also be involved. A simple clustering approach, using chemical fingerprints, assigned each compound to one of three classes (each containing one active compound and close homologues), and provided a framework for rationalizing the activity in terms of structure.


Subject(s)
Oxazoles/toxicity , Succinimides/toxicity , Thiazolidinediones/toxicity , Cell Survival/drug effects , Hep G2 Cells , Humans , Oxazoles/chemistry , Structure-Activity Relationship , Succinimides/chemistry , Thiazolidinediones/chemistry
2.
Toxicol In Vitro ; 25(8): 2113-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21964476

ABSTRACT

The thiazolidinedione (TZD) ring is a constituent of the glitazones that are used to treat type II diabetes. Liver injury has been reported following chronic glitazone use; however, they do not produce hepatic damage in common laboratory animal species. In contrast, 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) causes hepatotoxicity in rats. DCPT toxicity is dependent upon the presence of an intact TZD ring and cytochrome P450 (CYP)-mediated biotransformation. To further investigate TZD ring-induced toxicity, DCPT and several structural analogues or potential metabolites were tested in vitro using wild type human hepatoma HepG2 and HepG2 cells stably transfected with the CYP3A4 isozyme. CYP3A4 activity was confirmed by measuring testosterone 6ß-hydroxylation. Both cell lines were treated with 0-250 µM of the compounds in Hanks' balanced salt solution. Cell viability was measured after 24 h. DCPT and S-(3,5-dichlorophenyl)aminocarbonyl thioglycolic acid (DCTA) were the most toxic compounds of the series. Furthermore, DCPT was significantly more toxic in transfected cells (LC50=160.2±5.9 µM) than in wild type cells (LC50=233.0±19.7 µM). Treatment with a CYP3A4 inhibitor or inducer attenuated or potentiated DCPT cytotoxicity, respectively. These results suggest that DCPT-induced cytotoxicity in the transfected HepG2 cells is partially dependent on CYP3A4.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Thiazolidinediones/toxicity , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A Inhibitors , Dexamethasone/pharmacology , Enzyme Inhibitors/pharmacology , Hep G2 Cells , Humans , Hydrolysis , Hypoglycemic Agents/toxicity , Ketoconazole/pharmacology , Steroid Hydroxylases/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...