Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biometals ; 37(4): 923-941, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502284

ABSTRACT

Coating high-touch surfaces with inorganic agents, such as metals, appears to be a promising long-term disinfection strategy. However, there is a lack of studies exploring the effectiveness of copper-based products against viruses. In this study, we evaluated the cytotoxicity and virucidal effectiveness of products and materials containing copper against mouse hepatitis virus (MHV-3), a surrogate model for SARS-CoV-2. The results demonstrate that pure CuO and Cu possess activity against the enveloped virus at very low concentrations, ranging from 0.001 to 0.1% (w/v). A greater virucidal efficacy of CuO was found for nanoparticles, which showed activity even against viruses that are more resistant to disinfection such as feline calicivirus (FCV). Most of the evaluated products, with concentrations of Cu or CuO between 0.003 and 15% (w/v), were effective against MHV-3. Cryomicroscopy images of an MHV-3 sample exposed to a CuO-containing surface showed extensive damage to the viral capsid, presumably due to the direct or indirect action of copper ions.


Subject(s)
Antiviral Agents , COVID-19 , Copper , SARS-CoV-2 , Copper/chemistry , Copper/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Mice , Murine hepatitis virus/drug effects , Humans , Pandemics , Cats
2.
Pharmaceutics ; 16(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38399322

ABSTRACT

In the present study, we sought to develop materials applicable to personal and collective protection equipment to mitigate SARS-CoV-2. For this purpose, AgNPs were synthesized and stabilized into electrospinning nanofiber matrices (NMs) consisting of poly(vinyl alcohol) (PVA), chitosan (CHT), and poly-ε-caprolactone (PCL). Uniaxial nanofibers of PVA and PVA/CHT were developed, as well as coaxial nanofibers of PCL[PVA/CHT], in which the PCL works as a shell and the blend as a core. A crucial aspect of the present study is the in situ synthesis of AgNPs using PVA as a reducing and stabilizing agent. This process presents few steps, no additional toxic reducing agents, and avoids the postloading of drugs or the posttreatment of NM use. In general, the in situ synthesized AgNPs had an average size of 11.6 nm, and the incorporated nanofibers had a diameter in the range of 300 nm, with high uniformity and low polydispersity. The NM's spectroscopic, thermal, and mechanical properties were appropriate for the intended application. Uniaxial (PVA/AgNPs and PVA/CHT/AgNPs) and coaxial (PCL[PVA/CHT/AgNPs]) NMs presented virucidal activity (log's reduction ≥ 5) against mouse hepatitis virus (MHV-3) genus Betacoronavirus strains. In addition to that, the NMs did not present cytotoxicity against fibroblast cells (L929 ATCC® CCL-1TM lineage).

SELECTION OF CITATIONS
SEARCH DETAIL
...