Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930390

ABSTRACT

The risk of the releasing of nanometric particles from construction materials with nanometric components might be one of the biggest threats to further development of them. One of the possible ingress routes to human organisms is the respiratory system. Therefore, it is crucial to determine the risk of emission of nanometric particles during material usage. In the presented paper, abrasion of mortar samples with nanometric TiO2 was investigated. A special abrasion test setup was developed to reflect everyday abrasion of the concrete surface of pavements. In the study, three TiO2-modifed mortar series (and respective reference series) underwent the developed test protocol and the grains were mobilized from their surface due to the applied load analyzed (granulation, morphology, and chemical composition). For a comparative analysis, an abrasion parameter was developed. Based on the obtained results, the modification of cementitious composites with nanometric TiO2 contributed to a reduction in the emission of aerosols and, therefore, confirmed the compatibility between TiO2 and cement matrix.

2.
Materials (Basel) ; 16(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37763517

ABSTRACT

Due to its properties, pervious concrete is usually considered a material of choice for permeable surfaces. However, its permeability properties, as well as mechanical performance, depend on its effective porosity. In this paper, the Authors investigated the influence of material and technological factors on the selected properties of pervious concrete. A new method, based on the Vebe consistency test method, was developed to assess the vibration time required to reach a designed effective porosity of pervious concrete. Five classes of pervious concrete's consistency measured by the modified vebe method were proposed, and the limiting values to determine optimum vibration time were indicated. A model of dependence between the porosity of pervious concrete, its consistency, and compaction time was proposed. It was found that for the assumed range of variability, compaction time and material composition significantly influence the porosity of pervious concrete, and, therefore, all properties of pervious concrete.

3.
Materials (Basel) ; 15(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36079287

ABSTRACT

The application of photocatalytic materials has been intensively researched in recent decades. The process of nitric oxide (NO) oxidation during photocatalysis has been observed to result in the formation of nitric dioxide (NO2). This is a significant factor of the photocatalysis process, as NO2 is more toxic than NO. However, it has been reported that ozone (O3) is also formed during the photocatalytic reaction. This study analyzed the formation and oxidationof O3 during the photocatalytic oxidation of NO under ultraviolet irradiation using commercial photocatalytic powders: AEROXIDE® TiO2 P25 by Evonik, KRONOClean® 7050 by KRONOS®, and KRONOClean® 7000 by KRONOS®. An NO concentration of 100 ppb was assumed in laboratory tests based on the average nitric oxide concentrations recorded by the monitoring station in Warsaw. A mix flow-type reactor was applied in the study, and the appropriateness of its application was verified using a numerical model. The developed model assumed an empty reactor without a photocatalytic material, as well as a reactor with a photocatalytic material at its bottom to verify the gas flow in the chamber. The analysis of the air purification performance of photocatalytic powders indicated a significant reduction of NO and NOx and typical NO2 formation. However, no significant formation of O3 was observed. This observation was verified by the oxidation of pure ozone in the process of photocatalysis. The results indicated the oxidation of ozone concentration during the photocatalytic reaction, but self-decomposition of a significant amount of the gas.

4.
Materials (Basel) ; 14(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885358

ABSTRACT

The study was devoted to the numerical modelling of concrete-to-concrete interfaces. Such an interface can be found in many modern composite structures, so proper characterisation of its behaviour is of great importance. A strategy for calibration of a model based on cohesive finite elements and the elastic-damage traction-separation constitutive law available by default in the Abaqus code was proposed. Moreover, the default interface material model was enhanced with the user-field-variables subroutine to include a real strength envelope for such interfaces. Afterwards, the modelling approach was validated with numerical simulation of the most popular tests for determining the strength characteristics of concrete-to-concrete interfaces: three-point bending beam with a notch, splitting bi-material cubic specimens, and slant-shear tests. The results of own pilot studies were used as well as those reported by other researchers. The performed simulations proved the accuracy of the proposed modelling strategy (the mean ratio of ultimate forces obtained with numerical models and from experiments was equal to 1.01). Furthermore, the presented examples allowed us to better understand the basic test methods for concrete interfaces and the observed mechanisms of failure during them.

5.
Materials (Basel) ; 14(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072285

ABSTRACT

The study of the effect of cement type on the action of an admixture increasing the volume of concrete (containing aluminum powder), used in amounts of 0.5-1.5% of cement mass, was presented. The tests were carried out on cement mortars with Portland (CEM I) and ground granulated blast-furnace slag cement (CEM III). The following tests were carried out for the tested mortars: the air content in fresh mortars, compressive strength, flexural strength, increase in mortar volume, bulk density, pore structure evaluation (by the computer image analysis method) and changes in the concentration of OH- ions during the hydration of used cements. Differences in the action of the tested admixture depending on the cement used were found. To induce the expansion of CEM III mortars, a smaller amount of admixture is required than in the case of CEM I cement. Using the admixture in amounts above 1% of the cement mass causes cracks of mortars with CEM III cement due to slow hydrogen evolution, which occurs after mortar plasticity is lost. The use of an aluminum-containing admixture reduces the strength properties of the cement mortars, the effect being stronger in the case of CEM III cement. The influence of the sample molding time on the admixture action was also found.

SELECTION OF CITATIONS
SEARCH DETAIL
...