Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
2.
Med Phys ; 48(8): 4523-4531, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34231224

ABSTRACT

The past decade has seen the increasing integration of magnetic resonance (MR) imaging into radiation therapy (RT). This growth can be contributed to multiple factors, including hardware and software advances that have allowed the acquisition of high-resolution volumetric data of RT patients in their treatment position (also known as MR simulation) and the development of methods to image and quantify tissue function and response to therapy. More recently, the advent of MR-guided radiation therapy (MRgRT) - achieved through the integration of MR imaging systems and linear accelerators - has further accelerated this trend. As MR imaging in RT techniques and technologies, such as MRgRT, gain regulatory approval worldwide, these systems will begin to propagate beyond tertiary care academic medical centers and into more community-based health systems and hospitals, creating new opportunities to provide advanced treatment options to a broader patient population. Accompanying these opportunities are unique challenges related to their adaptation, adoption, and use including modification of hardware and software to meet the unique and distinct demands of MR imaging in RT, the need for standardization of imaging techniques and protocols, education of the broader RT community (particularly in regards to MR safety) as well as the need to continue and support research, and development in this space. In response to this, an ad hoc committee of the American Association of Physicists in Medicine (AAPM) was formed to identify the unmet needs, roadblocks, and opportunities within this space. The purpose of this document is to report on the major findings and recommendations identified. Importantly, the provided recommendations represent the consensus opinions of the committee's membership, which were submitted in the committee's report to the AAPM Board of Directors. In addition, AAPM ad hoc committee reports differ from AAPM task group reports in that ad hoc committee reports are neither reviewed nor ultimately approved by the committee's parent groups, including at the council and executive committee level. Thus, the recommendations given in this summary should not be construed as being endorsed by or official recommendations from the AAPM.


Subject(s)
Magnetic Resonance Imaging , Radiotherapy, Image-Guided , Humans , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , United States
3.
PLoS One ; 16(6): e0252966, 2021.
Article in English | MEDLINE | ID: mdl-34191819

ABSTRACT

Recent innovations in quantitative magnetic resonance imaging (MRI) measurement methods have led to improvements in accuracy, repeatability, and acquisition speed, and have prompted renewed interest to reevaluate the medical value of quantitative T1. The purpose of this study was to determine the bias and reproducibility of T1 measurements in a variety of MRI systems with an eye toward assessing the feasibility of applying diagnostic threshold T1 measurement across multiple clinical sites. We used the International Society of Magnetic Resonance in Medicine/National Institute of Standards and Technology (ISMRM/NIST) system phantom to assess variations of T1 measurements, using a slow, reference standard inversion recovery sequence and a rapid, commonly-available variable flip angle sequence, across MRI systems at 1.5 tesla (T) (two vendors, with number of MRI systems n = 9) and 3 T (three vendors, n = 18). We compared the T1 measurements from inversion recovery and variable flip angle scans to ISMRM/NIST phantom reference values using Analysis of Variance (ANOVA) to test for statistical differences between T1 measurements grouped according to MRI scanner manufacturers and/or static field strengths. The inversion recovery method had minor over- and under-estimations compared to the NMR-measured T1 values at both 1.5 T and 3 T. Variable flip angle measurements had substantially greater deviations from the NMR-measured T1 values than the inversion recovery measurements. At 3 T, the measured variable flip angle T1 for one vendor is significantly different than the other two vendors for most of the samples throughout the clinically relevant range of T1. There was no consistent pattern of discrepancy between vendors. We suggest establishing rigorous quality control procedures for validating quantitative MRI methods to promote confidence and stability in associated measurement techniques and to enable translation of diagnostic threshold from the research center to the entire clinical community.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Phantoms, Imaging , Humans , Reference Values , Reproducibility of Results
4.
Magn Reson Med ; 86(3): 1194-1211, 2021 09.
Article in English | MEDLINE | ID: mdl-33847012

ABSTRACT

PURPOSE: A standard MRI system phantom has been designed and fabricated to assess scanner performance, stability, comparability and assess the accuracy of quantitative relaxation time imaging. The phantom is unique in having traceability to the International System of Units, a high level of precision, and monitoring by a national metrology institute. Here, we describe the phantom design, construction, imaging protocols, and measurement of geometric distortion, resolution, slice profile, signal-to-noise ratio (SNR), proton-spin relaxation times, image uniformity and proton density. METHODS: The system phantom, designed by the International Society of Magnetic Resonance in Medicine ad hoc committee on Standards for Quantitative MR, is a 200 mm spherical structure that contains a 57-element fiducial array; two relaxation time arrays; a proton density/SNR array; resolution and slice-profile insets. Standard imaging protocols are presented, which provide rapid assessment of geometric distortion, image uniformity, T1 and T2 mapping, image resolution, slice profile, and SNR. RESULTS: Fiducial array analysis gives assessment of intrinsic geometric distortions, which can vary considerably between scanners and correction techniques. This analysis also measures scanner/coil image uniformity, spatial calibration accuracy, and local volume distortion. An advanced resolution analysis gives both scanner and protocol contributions. SNR analysis gives both temporal and spatial contributions. CONCLUSIONS: A standard system phantom is useful for characterization of scanner performance, monitoring a scanner over time, and to compare different scanners. This type of calibration structure is useful for quality assurance, benchmarking quantitative MRI protocols, and to transition MRI from a qualitative imaging technique to a precise metrology with documented accuracy and uncertainty.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Signal-To-Noise Ratio
5.
Radiology ; 298(3): 640-651, 2021 03.
Article in English | MEDLINE | ID: mdl-33464181

ABSTRACT

Background Proton density fat fraction (PDFF) estimated by using chemical shift-encoded (CSE) MRI is an accepted imaging biomarker of hepatic steatosis. This work aims to promote standardized use of CSE MRI to estimate PDFF. Purpose To assess the accuracy of CSE MRI methods for estimating PDFF by determining the linearity and range of bias observed in a phantom. Materials and Methods In this prospective study, a commercial phantom with 12 vials of known PDFF values were shipped across nine U.S. centers. The phantom underwent 160 independent MRI examinations on 27 1.5-T and 3.0-T systems from three vendors. Two three-dimensional CSE MRI protocols with minimal T1 bias were included: vendor and standardized. Each vendor's confounder-corrected complex or hybrid magnitude-complex based reconstruction algorithm was used to generate PDFF maps in both protocols. The Siemens reconstruction required a configuration change to correct for water-fat swaps in the phantom. The MRI PDFF values were compared with the known PDFF values by using linear regression with mixed-effects modeling. The 95% CIs were calculated for the regression slope (ie, proportional bias) and intercept (ie, constant bias) and compared with the null hypothesis (slope = 1, intercept = 0). Results Pooled regression slope for estimated PDFF values versus phantom-derived reference PDFF values was 0.97 (95% CI: 0.96, 0.98) in the biologically relevant 0%-47.5% PDFF range. The corresponding pooled intercept was -0.27% (95% CI: -0.50%, -0.05%). Across vendors, slope ranges were 0.86-1.02 (vendor protocols) and 0.97-1.0 (standardized protocol) at 1.5 T and 0.91-1.01 (vendor protocols) and 0.87-1.01 (standardized protocol) at 3.0 T. The intercept ranges (absolute PDFF percentage) were -0.65% to 0.18% (vendor protocols) and -0.69% to -0.17% (standardized protocol) at 1.5 T and -0.48% to 0.10% (vendor protocols) and -0.78% to -0.21% (standardized protocol) at 3.0 T. Conclusion Proton density fat fraction estimation derived from three-dimensional chemical shift-encoded MRI in a commercial phantom was accurate across vendors, imaging centers, and field strengths, with use of the vendors' product acquisition and reconstruction software. © RSNA, 2021 See also the editorial by Dyke in this issue.


Subject(s)
Fatty Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Algorithms , Biomarkers , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Prospective Studies , Protons , Reproducibility of Results , United States
6.
J Magn Reson Imaging ; 51(2): 331-338, 2020 02.
Article in English | MEDLINE | ID: mdl-31355502

ABSTRACT

The need for a guidance document on MR safe practices arose from a growing awareness of the MR environment's potential risks and adverse event reports involving patients, equipment, and personnel. Initially published in 2002, the American College of Radiology White Paper on MR Safety established de facto industry standards for safe and responsible practices in clinical and research MR environments. The most recent version addresses new sources of risk of adverse events, increases awareness of dynamic MR environments, and recommends that those responsible for MR medical director safety undergo annual MR safety training. With regular updates to these guidelines, the latest MR safety concerns can be accounted for to ensure a safer MR environment where dangers are minimized. Level of Evidence: 1 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2020;51:331-338.


Subject(s)
Magnetic Resonance Imaging , Humans
7.
Insights Imaging ; 10(1): 87, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31468205

ABSTRACT

Observer-driven pattern recognition is the standard for interpretation of medical images. To achieve global parity in interpretation, semi-quantitative scoring systems have been developed based on observer assessments; these are widely used in scoring coronary artery disease, the arthritides and neurological conditions and for indicating the likelihood of malignancy. However, in an era of machine learning and artificial intelligence, it is increasingly desirable that we extract quantitative biomarkers from medical images that inform on disease detection, characterisation, monitoring and assessment of response to treatment. Quantitation has the potential to provide objective decision-support tools in the management pathway of patients. Despite this, the quantitative potential of imaging remains under-exploited because of variability of the measurement, lack of harmonised systems for data acquisition and analysis, and crucially, a paucity of evidence on how such quantitation potentially affects clinical decision-making and patient outcome. This article reviews the current evidence for the use of semi-quantitative and quantitative biomarkers in clinical settings at various stages of the disease pathway including diagnosis, staging and prognosis, as well as predicting and detecting treatment response. It critically appraises current practice and sets out recommendations for using imaging objectively to drive patient management decisions.

9.
Curr Probl Diagn Radiol ; 48(3): 235-240, 2019.
Article in English | MEDLINE | ID: mdl-29685400

ABSTRACT

PURPOSE: To compare the value of dynamic contrast-enhanced magnetic resonance imaging-pharmacokinetic (PK) parameters vs tumor volume in predicting breast cancer neoadjuvant chemotherapy response (NACR) and patient survival. SUBJECTS AND METHODS: Sixty-six patients with locally advanced breast cancer who underwent breast MRI monitoring of NACR were retrospectively analyzed. We compared baseline transfer constant (Ktrans), reflux rate contrast (kep), and extracellular extravascular volume fraction (ve) with the same parameters obtained at early postchemotherapy MRI, and examined model-independent changes in time-intensity curves (maximum slope, contrast enhancement ratio, and IAUC90). Tumor size changes (tumor volume, single dimension, and Response Evaluation Criteria in Solid Tumors [RECIST]) were also analyzed. The Spearman correlation test was used to assess the association between size and PK parameters, and regression analysis to assess the association with 5-year disease-free survival. RESULTS: Higher ve values at baseline were associated with greater decreases in tumor size (P = 0.008). Changes in Ktrans and IAUC90 were the strongest predictors of NACR. Changes in IAUC90 (P = 0.04) and RECIST (P = 0.003) were independently associated with pathologic response. The only parameter significantly associated with 5-year survival was change in RECIST (P = 0.001). However, there was a trend toward statistical significance for changes in ve and Ktrans, with greater changes associated with longer survival. CONCLUSION: Changes in PK and dynamic contrast-enhanced magnetic resonance imaging kinetic parameters may have a role in predicting NACR in breast tumors. Although changes in Ktrans and IAUC90 are helpful in predicting NACR, they do not show significant association with survival. Early RECIST size change measured by MRI remains the strongest predictor of overall patient survival.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Contrast Media/pharmacokinetics , Gadolinium DTPA/pharmacokinetics , Magnetic Resonance Imaging/methods , Adult , Aged , Breast Neoplasms/pathology , Female , Humans , Image Interpretation, Computer-Assisted , Middle Aged , Neoadjuvant Therapy , Prospective Studies , Response Evaluation Criteria in Solid Tumors , Retrospective Studies , Survival Rate , Treatment Outcome , Tumor Burden
10.
J Magn Reson Imaging ; 49(7): e101-e121, 2019 06.
Article in English | MEDLINE | ID: mdl-30451345

ABSTRACT

Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.


Subject(s)
Biomarkers , Diffusion Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Adult , Aged , Brain/diagnostic imaging , Clinical Trials as Topic , Contrast Media , Female , Humans , Liver/diagnostic imaging , Male , Medical Oncology/standards , Middle Aged , Multicenter Studies as Topic , Neuroimaging/methods , Phantoms, Imaging , Prostate/diagnostic imaging , Reproducibility of Results
11.
Phys Med Biol ; 64(2): 02NT01, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30540982

ABSTRACT

Longitudinal assessment of quantitative imaging biomarkers (QIBs) requires a comprehensive quality control (QC) program to minimize bias and variance in measurement results. In addition, the availability of data analysis software from multiple vendors emphasizes the need for a means of quantitatively comparing the computed QIB measures produced by the applications. The purpose of this work is to describe a digital reference object (DRO) that has been developed for the evaluation of arterial spin-labeling (ASL) measurement results. The ASL DRO is a synthetic data set consisting of 10 × 10 voxel square blocks with a range of ASL control image signal-to-noise ratio (SNRControl), blood flow (BF), and proton density (PD) image SNR values (SNRControl:1-100, BF:10-210 ml/100 g min-1, SNRPD:10-100). A pseudo-continuous ASL sequence was simulated with acquisition parameters and modeled signal intensities defined according to those typically associated with clinically-acquired ASL images. ASL parameters were estimated using the commercially-available nordicICE software package (NordicNeuroLab, Inc, Milwaukee, WI). Percent bias measures and Bland-Altman analyses demonstrated decreased bias and variance with increasing SNRControl and BF values. Excellent agreement with reference values was seen for all BF values above an SNRControl of 5 (concordance correlation coefficient greater than 0.92 for all SNRPD values). The ASL DRO developed in this work allows for the evaluation of software bias and variance across physiologically-meaningful BF and SNRControl values. Such studies are essential to the transition of quantitative ASL-based BF measurements into widespread clinical research applications, and ultimately, routine clinical care.


Subject(s)
Arteries/diagnostic imaging , Data Analysis , Phantoms, Imaging , Quality Control , Signal-To-Noise Ratio , Spin Labels , Humans
12.
Med Phys ; 45(10): e820-e828, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30248184

ABSTRACT

BACKGROUND: This article is a summary of the quantitative imaging subgroup of the 2017 AAPM Practical Big Data Workshop (PBDW-2017) on progress and challenges in big data applied to cancer treatment and research supplemented by a draft white paper following an American Association of Physicists in Medicine FOREM meeting on Imaging Genomics in 2014. AIMS: The goal of PBDW-2017 was to close the gap between theoretical vision and practical experience with encountering and solving challenges in curating and analyzing data. CONCLUSIONS: Recommendations based on the meetings are summarized.


Subject(s)
Databases, Factual , Diagnostic Imaging/statistics & numerical data , Medical Informatics , Physics , Research Report , Societies, Medical/statistics & numerical data , Humans , Neoplasms/diagnostic imaging , Workflow
14.
Magn Reson Med ; 79(1): 48-61, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29083101

ABSTRACT

The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Algorithms , Biomarkers/metabolism , Calibration , Contrast Media/chemistry , Elasticity , Humans , Image Processing, Computer-Assisted , Linear Models , Models, Theoretical , Perfusion , Reference Values , Reproducibility of Results , Signal-To-Noise Ratio
15.
Nat Rev Clin Oncol ; 14(3): 169-186, 2017 03.
Article in English | MEDLINE | ID: mdl-27725679

ABSTRACT

Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.


Subject(s)
Biomarkers, Tumor , Neoplasms/diagnosis , Clinical Decision-Making , Cost-Benefit Analysis , Fluorodeoxyglucose F18 , Folic Acid/analogs & derivatives , Humans , Neoplasms/economics , Organotechnetium Compounds , Positron-Emission Tomography/methods , Prognosis , Radiopharmaceuticals , Reproducibility of Results , Research Design/standards , Selection Bias
16.
Phys Med Biol ; 61(2): 974-82, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26738776

ABSTRACT

Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.


Subject(s)
Algorithms , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Computer Simulation , Humans
18.
PLoS One ; 10(7): e0130168, 2015.
Article in English | MEDLINE | ID: mdl-26208254

ABSTRACT

BACKGROUND: Dynamic contrast-enhanced MRI (DCE-MRI) biomarkers have proven utility in tumors in evaluating microvascular perfusion and permeability, but it is unclear whether measurements made in different centers are comparable due to methodological differences. PURPOSE: To evaluate how commonly utilized analytical methods for DCE-MRI biomarkers affect both the absolute parameter values and repeatability. MATERIALS AND METHODS: DCE-MRI was performed on three consecutive days in twelve rats bearing C6 xenografts. Endothelial transfer constant (Ktrans), extracellular extravascular space volume fraction (ve), and contrast agent reflux rate constant (kep) measures were computed using: 2-parameter ("Tofts" or "standard Kety") vs. 3-parameter ("General Kinetic" or "extended Kety") compartmental models (including blood plasma volume fraction (vp) with 3-parameter models); individual- vs. population-based vascular input functions (VIFs); and pixel-by-pixel vs. whole tumor-ROI. Variability was evaluated by within-subject coefficient of variation (wCV) and variance components analyses. RESULTS: DCE-MRI absolute parameter values and wCVs varied widely by analytical method. Absolute parameter values ranged, as follows, median Ktrans, 0.09-0.18 min-1; kep, 0.51-0.92 min-1; ve, 0.17-0.23; and vp, 0.02-0.04. wCVs also varied widely by analytical method, as follows: mean Ktrans, 32.9-61.9%; kep, 11.6-41.9%; ve, 16.1-54.9%; and vp, 53.9-77.2%. Ktrans and kep values were lower with 3- than 2-parameter modeling (p<0.0001); kep and vp were lower with pixel- than whole-ROI analyses (p<0.0006). wCVs were significantly smaller for ve, and larger for kep, with individual- than population-based VIFs. CONCLUSIONS: DCE-MRI parameter values and repeatability can vary widely by analytical methodology. Absolute values of DCE-MRI biomarkers are unlikely to be comparable between different studies unless analyses are carefully standardized.


Subject(s)
Algorithms , Biomarkers/analysis , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Animals , Cell Line, Tumor , Contrast Media , Glioma/diagnosis , Glioma/diagnostic imaging , Male , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/diagnostic imaging , Radiography , Rats , Rats, Nude , Reproducibility of Results , Sensitivity and Specificity
19.
Stat Methods Med Res ; 24(1): 141-74, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24872353

ABSTRACT

Medical imaging serves many roles in patient care and the drug approval process, including assessing treatment response and guiding treatment decisions. These roles often involve a quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic structure or biochemical process derived from medical images. Before a quantitative imaging biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo evaluation of its technical performance, which entails assessment of performance metrics such as repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will involve quantitative summaries of results from multiple studies to overcome limitations due to the typically small sample sizes of technical performance studies and/or to include a broader range of clinical settings and patient populations. This paper is a review of meta-analysis procedures for such an evaluation, including identification of suitable studies, statistical methodology to evaluate and summarize the performance metrics, and complete and transparent reporting of the results. This review addresses challenges typical of meta-analyses of technical performance, particularly small study sizes, which often causes violations of assumptions underlying standard meta-analysis techniques. Alternative approaches to address these difficulties are also presented; simulation studies indicate that they outperform standard techniques when some studies are small. The meta-analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) test-retest repeatability data for illustrative purposes.


Subject(s)
Biomarkers , Diagnostic Imaging , Guidelines as Topic , Meta-Analysis as Topic , Research Design , Statistics as Topic , Humans , Reproducibility of Results
20.
Stat Methods Med Res ; 24(1): 68-106, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24919829

ABSTRACT

Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research.


Subject(s)
Algorithms , Biomarkers , Diagnostic Imaging , Research Design , Statistics as Topic , Bias , Computer Simulation , Humans , Phantoms, Imaging , Reference Standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...