Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neth Heart J ; 24(1): 82-4, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26645711
2.
Phys Rev Lett ; 94(14): 142501, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15904059

ABSTRACT

We have set limits on contributions of scalar interactions to nuclear beta decay. A magneto-optical trap provides a localized source of atoms suspended in space, so the low-energy recoiling nuclei can freely escape and be detected in coincidence with the beta. This allows reconstruction of the neutrino momentum, and the measurement of the beta-nu correlation, in a more direct fashion than previously possible. The beta-nu correlation parameter of the 0(+)-->0(+) pure Fermi decay of (38)K(m) is a =0.9981+/-0.0030+0.0032 / -0.0037, consistent with the standard model prediction a =1.

3.
Phys Rev Lett ; 90(1): 012501, 2003 Jan 10.
Article in English | MEDLINE | ID: mdl-12570603

ABSTRACT

A new technique, full neutrino momentum reconstruction, is used to set limits on the admixture of heavy neutrinos into the electron neutrino. We measure coincidences between nuclear recoils and positrons from the beta decay of trapped radioactive atoms and deduce the neutrino momentum. A search for peaks in the reconstructed recoil time-of-flight spectrum as a function of positron energy is performed. The admixture upper limits range from 4 x 10(-3) to 2 x 10(-2) and are the best direct limits for neutrinos (as opposed to antineutrinos) for the mass region of 0.7 to 3.5 MeV.

SELECTION OF CITATIONS
SEARCH DETAIL
...