Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-32431765

ABSTRACT

In contrast to efforts focusing on improving inclusion in STEM classrooms from kindergarten through undergraduate (K-16), efforts to improve inclusion in scientific meetings and conferences, important hubs of STEM culture, are more recent. Markers of inclusion that are sometimes overlooked at these events can include the composition of panels, how workshops are run, the affordability of conferences, and various other mechanisms that maintain pre-existing hierarchies and norms that limit the participation of early-career researchers and individuals of minoritized cultural, linguistic, and economic backgrounds. The Inclusive Environments and Metrics in Biology Education and Research (iEMBER) network coordinates efforts of researchers from many fields interested in diversity and inclusion in biology education. Given the concerns regarding inclusion at professional meetings, iEMBER has developed and implemented several practices in planning and executing our meetings to make them more inclusive. In this report, we share our experiences developing inclusive meetings on biology education research and discuss the outcomes of such efforts. Specifically, we present our approach to planning and executing the iEMBER 2019 conference and the National Association of Biology Teachers iEMBER 2019 workshop. This report adds to the growing body of resources on inclusive meetings, provides readers with an account of how such an attempt at implementation might unfold, and complements existing theories and work relating to the importance and functioning of such meetings in terms of representation in STEM.

2.
J Chem Educ ; 97(2): 437-442, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-34290452

ABSTRACT

Design of undergraduate laboratory courses that provide meaningful research-based experiences enhance undergraduate curricula and prepare future graduate students for research careers. In this article, a Course-based Undergraduate Research Experience (CURE) laboratory module was designed for upper-division undergraduate biochemistry and chemistry students. The laboratory module enabled students to build upon recently published data in the literature to decipher atomistic insight for an essential protein-protein interaction in human biology through the use of biomolecular NMR spectroscopy. Students compared their results with published data with the goal of identifying specific regions of the protein-protein interaction responsible for triggering an allosteric conformational change. The laboratory module introduced students to basic and advance laboratory techniques, including protein purification, NMR spectroscopy, and analysis of protein structure using molecular visualization software.

3.
PLoS One ; 13(10): e0204605, 2018.
Article in English | MEDLINE | ID: mdl-30359371

ABSTRACT

Obesity and insulin resistance are primary risk factors for Non-Alcoholic Fatty Liver Disease (NAFLD). NAFLD is generally exhibited by non-progressive simple steatosis. However, a significant subset of patient's progress to nonalcoholic steatohepatitis (NASH) that is defined by the presence of steatosis, inflammation and hepatocyte injury with fibrosis. Unfortunately, there are no approved therapies for NAFLD or NASH and therefore therapeutic approaches are urgently needed. Niclosamide is an U.S. Food and Drug Administration (FDA)-approved anthelmintic drug that mediates its effect by uncoupling oxidative phosphorylation. Niclosamide and its salt forms, Niclosamide Ethanolamine (NEN), and Niclosamide Piperazine (NPP) have shown efficacy in murine models of diet induced obesity characterized by attenuation of the prominent fatty liver disease phenotype and improved glucose metabolism. While the exact mechanism(s) underlying these changes remains unclear, the ability to uncouple oxidative phosphorylation leading to increased energy expenditure and lipid metabolism or attenuation of PKA mediated glucagon signaling in the liver have been proposed. Unfortunately, niclosamide has very poor water solubility, leading to low oral bioavailability. This, in addition to mitochondrial uncoupling activity and potential genotoxicity have reduced enthusiasm for its clinical use. More recently, salt forms of niclosamide, NEN and NPP, have demonstrated improved oral bioavailability while retaining activity. This suggests that development of safer more effective niclosamide derivatives for the treatment of NAFLD and Type 2 Diabetes may be possible. Herein we explored the ability of a series of N-substituted phenylbenzamide derivatives of the niclosamide salicylanilide chemotype to attenuate hepatic steatosis using a novel phenotypic in vitro model of fatty liver and the high fat diet-fed mouse model of diet induced obesity. These studies identified novel compounds with improved pre-clinical properties that attenuate hepatic steatosis in vitro and in vivo. These compounds with improved drug properties may be useful in alleviating symptoms and protection against disease progression in patients with metabolic syndrome and NAFLD.


Subject(s)
Anti-Obesity Agents/pharmacology , Benzamides/pharmacology , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/drug therapy , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacokinetics , Benzamides/chemistry , Benzamides/pharmacokinetics , Cell Respiration/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , High-Throughput Screening Assays , Humans , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Rats, Sprague-Dawley , Salmonella typhimurium/drug effects
4.
Mol Nutr Food Res ; 61(9)2017 09.
Article in English | MEDLINE | ID: mdl-28371117

ABSTRACT

SCOPE: Chicory (Cichorium intybus L.) is a perennial herb often consumed as a vegetable, whereas the ground and roasted roots are blended as a coffee substitute. Caffeoylquinic or chlorogenic acids (CQA), the abundant intermediates of lignin biosynthesis in chicory, have been reported to improve glucose metabolism in humans, but the functional group in their structure responsible for this effect has not been yet characterized. METHODS AND RESULTS: Here, we showed that three di-O-caffeoylquinic acids suppressed hepatic glucose production in H4IIE rat hepatoma cells by reducing expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), two key enzymes that regulate hepatic gluconeogenesis. Direct comparisons between CQAs and their metabolites (3-caffeoylquinic, caffeic, and quinic acids) revealed the caffeic acid moiety alone was responsible for the observed effects. Further analysis suggested the activation of PI3K and MAPK pathways as a method of controlling gene expression was shared between caffeoylquinic and caffeic acids. These compounds promoted increased mitochondrial respiration and cellular metabolism, in part by inducing oxidative phosphorylation and proton leak. CONCLUSION: We concluded that the caffeic acid moiety was important for suppression of hepatic gluconeogenesis and hyperglycemia, ultimately strengthening the link between dietary interventions based on caffeic acid-containing plant foods and healthy glucose metabolism.


Subject(s)
Cichorium intybus/chemistry , Hypoglycemic Agents/pharmacology , Quinic Acid/analogs & derivatives , Animals , Cell Line, Tumor , Gluconeogenesis/drug effects , MAP Kinase Signaling System , Pharmacogenetics , Phosphatidylinositol 3-Kinases/physiology , Plant Roots/chemistry , Quinic Acid/pharmacology , Rats , Structure-Activity Relationship
5.
Nat Prod Commun ; 9(1): 91-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24660472

ABSTRACT

Licorice root (Glycyrrhiza glabra), an herbal Chinese medicine, has shown medicinal uses in therapeutics and cancer prevention. Dibenzoylmethane (DBM; 1, 3-diphenyl-1, 3-propadinedione), a small beta-diketone, has been reported to be a minor constituent of licorice and a known deregulator of the human prostate cancer cell cycle. Characterization of the phytochemical profiles of licorice root forms including commercially available DBM will advance our search in identifying novel reagents for prostate cancer therapeutics. Gas chromatography- triple quadrupole-mass spectrometric analysis was used for detecting DBM in licorice root extracts. DBM and all licorice forms exhibited a component with a retention time of 14.5 minutes. The major fragment ions detected were at m/z 77, 105, 147, 223 and 224 at the identified retention time by selected reaction monitoring/SRM. These data confirm the presence of DBM from its natural source (G. glabra), and the GC-MS/SRM method helps in the identification of this minor component in a complex biological matrix.


Subject(s)
Chalcones/analysis , Glycyrrhiza/chemistry , Drugs, Chinese Herbal/chemistry , Gas Chromatography-Mass Spectrometry , Plant Roots/chemistry
7.
Adv Biol Chem ; 3(4): 389-396, 2013 Aug.
Article in English | MEDLINE | ID: mdl-25632371

ABSTRACT

The benzenearsonate, Roxarsone, has been used since 1944 as an antimicrobial, growth-promoting poultry feed additive. USGS and EPA report that Roxarsone (4-hydroxy-3-nitrobenzenearsonate) and metabolites, including AHBA (3-amino-4-hydroxybenzenearsonate), contaminate waterways at greater than 1100 tons annually. To assess human impact of these organic arsenic water contaminants, it was important to study their potential absorption. The human adenocarcinoma cell line, Caco-2, is a model for intestinal absorption. We found proliferative effects on Caco-2 cells at micromolar levels of these compounds, as monitored by [3H]-thymidine incorporation into DNA. Flow cytometry cell cycle analysis confirmed accumulation in S phase from 21% (control) to 36% (24 hour exposure to 10 µM AHBA). Confluent Caco-2 cells grown on collagen-coated Transwell plates were dosed on the apical side. After exposure, media from apical and basolateral sides were collected separately. Following removal of FBS by 30K centrifugal filtration, the benzenearsonates in the collected media were analyzed by HPLC. Analyses were at wavelengths in the ultraviolet/visible range where the absorbance values were linear with respect to concentration. Concentrations were calculated by comparison with analytically-prepared commercial standards. Results from cells dosed at 10 µM for 24 hours with AHBA, Roxarsone, or Acetarsone indicated 6% - 29% permeation occurring from apical to basolateral side, modeling absorption across intestinal epithelium to the circulatory system. Benzenearsonate feed additives are frequently applied in combination with antibiotics, raising additional health concerns. We conclude that micromolar levels of these benzenearsonates are adequate to stimulate Caco-2 cell proliferation.

8.
Anticancer Res ; 27(3B): 1483-8, 2007.
Article in English | MEDLINE | ID: mdl-17595765

ABSTRACT

BACKGROUND: The androgen receptor (AR) plays an important role in the development and progression of prostate cancer. Functional AR expression persists in most cases of hormone-refractory prostate cancer and may play a role clinically in the progression from hormone-responsive to hormone-refractory or advanced prostate cancer. In order to combat the progression of this disease, one needs to identify new chemotherapeutic agents with novel mechanisms of action. MATERIALS AND METHODS: In this study, we attempt to clarify the molecular mechanism by which dibenzoylmethane (DBM), a beta3-diketone, inhibits the growth of androgen-responsive human LNCaP prostate cancer cells and down-regulates expression of the AR. To this end, we treated LNCaP cells with different concentrations of DBM to monitor function and expression of AR and an AR-associated protein. RESULTS: Previous studies showed that DBM could inhibit cell proliferation in LNCaP cells by arresting the cells at the G1 phase without causing cell death. Western blot and RT-PCR/Northern blot analyses showed a reduction in AR protein and mRNA expression by DBM in a dose-dependent manner. Furthermore, stable transfections of an androgen-independent human prostate cancer cell line, transfected with a full-length human AR cDNA sequence, showed that DBM down-regulated AR protein levels. DBM also inhibited the secretion of the AR-regulated tumor marker, prostate-specific antigen (PSA). Moreover, the relative binding affinity of DBM to AR was lower than that of the synthetic androgen R1881 (methyltrienolone) suggesting that DBM must suppress AR expression independent of an AR-DBM bound interaction. CONCLUSION: These data provide new insights into how DBM regulates AR function and cell growth, as well as providing promising evidence to support DBM as a chemotherapeutic agent for prostate cancer through suppression of the function of the androgen receptor.


Subject(s)
Androgen Receptor Antagonists , Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Male , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/antagonists & inhibitors , RNA, Messenger/analysis , RNA, Messenger/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
9.
Proteomics ; 4(9): 2814-21, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15352255

ABSTRACT

This paper explores the use of proteomics as a tool for identifying protein species whose expression has been altered by dibenzoylmethane (DBM) in LNCaP cells. Although DBM, a constituent of licorice, has been shown to induce cell cycle arrest and regulate androgen receptor (AR) expression, the mechanism by which these events occur is unknown. To develop a better understanding of the effect of DBM on cancer cells, we analyzed changes in protein expression induced by DBM in LNCaP cells using two-dimensional (2-D) gel electrophoresis. The proteomic approach used to study LNCaP cells has lead to the analysis and identification of a number of protein species that increase or decrease as a result of exposure to DBM. In particular, twenty features were found to be differentially expressed in this study based on the quantitation of two separate 2-D-fluorescence difference gel electrophoresis analyses. Thirteen of these features were identified through mass spectrometric analysis. The intensity of 10 out of the 13 spots identified increased 2- to 3-fold in response to 25 micro M and 50 micro M DBM and the remaining three spots decreased 2-fold in response to the same DBM treatment. This study investigates proteomic changes induced by treatment of cells with DBM in order to develop a model for the mechanism by which DBM induces cell cycle arrest and represses AR expression.


Subject(s)
Chalcones/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Proteome/analysis , Cell Line, Tumor , Electrophoresis, Gel, Two-Dimensional/methods , Female , Gene Expression Profiling , Humans , Male , Molecular Sequence Data , Prostatic Neoplasms , Proteomics/methods , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
10.
Cancer Lett ; 178(2): 161-5, 2002 Apr 25.
Article in English | MEDLINE | ID: mdl-11867200

ABSTRACT

Dibenzoylmethane (DBM), a minor beta-diketone constituent of licorice and sunscreens, has been shown to exhibit anti-neoplastic effects in chemically induced skin and mammary cancers in several animal models. To date, no mechanism for the growth inhibitory effects of DBM on prostate cancer cells has been proposed. In this study, we examined the effects of DBM on the growth and cell cycle kinetics of several human prostate carcinoma cell lines. Using an MTT cytotoxicity assay, IC50 values of 25-100 microM were observed following 72 h exposure to DBM. LNCaP, DU145, and PC-3 prostate carcinoma cell lines were particularly sensitive in comparison to the cells with the vehicle alone. Flow cytometric analyses showed deregulation of the cell cycle, which correlated with the observed cytostatic effects of DBM in prostate carcinoma cells. These data suggest a potential role for DBM in the prevention and treatment of prostate cancer.


Subject(s)
Anticarcinogenic Agents/pharmacology , Benzoates/pharmacology , Cell Cycle/drug effects , Chalcones , Prostatic Neoplasms/pathology , Prostatic Neoplasms/prevention & control , Anticarcinogenic Agents/therapeutic use , Benzoates/therapeutic use , Flow Cytometry , Humans , Male , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...