Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38059129

ABSTRACT

There is growing interest in the kinematic analysis of human functional upper extremity movement (FUEM) for applications such as health monitoring and rehabilitation. Deconstructing functional movements into activities, actions, and primitives is a necessary procedure for many of these kinematic analyses. Advances in machine learning have led to progress in human activity and action recognition. However, their utility for analyzing the FUEM primitives of reaching and targeting during reach-to-grasp and reach-to-point tasks remains limited. Domain experts use a variety of methods for segmenting the reaching and targeting motion primitives, such as kinematic thresholds, with no consensus on what methods are best to use. Additionally, current studies are small enough that segmentation results can be manually inspected for correctness. As interest in FUEM kinematic analysis expands, such as in the clinic, the amount of data needing segmentation will likely exceed the capacity of existing segmentation workflows used in research laboratories, requiring new methods and workflows for making segmentation less cumbersome. This paper investigates five reaching and targeting motion primitive segmentation methods in two different domains (haptics simulation and real world) and how to evaluate these methods. This work finds that most of the segmentation methods evaluated perform reasonably well given current limitations in our ability to evaluate segmentation results. Furthermore, we propose a method to automatically identify potentially incorrect segmentation results for further review by the human evaluator. Clinical impact: This work supports efforts to automate aspects of processing upper extremity kinematic data used to evaluate reaching and grasping, which will be necessary for more widespread usage in clinical settings.


Subject(s)
Movement , Upper Extremity , Humans , Motion , Biomechanical Phenomena , Hand Strength
2.
Front Rehabil Sci ; 4: 1130847, 2023.
Article in English | MEDLINE | ID: mdl-37113748

ABSTRACT

The analysis of functional upper extremity (UE) movement kinematics has implications across domains such as rehabilitation and evaluating job-related skills. Using movement kinematics to quantify movement quality and skill is a promising area of research but is currently not being used widely due to issues associated with cost and the need for further methodological validation. Recent developments by computationally-oriented research communities have resulted in potentially useful methods for evaluating UE function that may make kinematic analyses easier to perform, generally more accessible, and provide more objective information about movement quality, the importance of which has been highlighted during the COVID-19 pandemic. This narrative review provides an interdisciplinary perspective on the current state of computer-assisted methods for analyzing UE kinematics with a specific focus on how to make kinematic analyses more accessible to domain experts. We find that a variety of methods exist to more easily measure and segment functional UE movement, with a subset of those methods being validated for specific applications. Future directions include developing more robust methods for measurement and segmentation, validating these methods in conjunction with proposed kinematic outcome measures, and studying how to integrate kinematic analyses into domain expert workflows in a way that improves outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...