Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 292(3): H1412-9, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17085537

ABSTRACT

Endogenous angiotensin (ANG) II and ANG-(1-7) act at the nucleus tractus solitarius (NTS) to differentially modulate neural control of the circulation. The role of these peptides endogenous to NTS on cardiovascular reflex function was investigated in transgenic rats with low brain angiotensinogen (Aogen) due to glial overexpression of an antisense to Aogen (ASrAOGEN) and in Sprague-Dawley (SD) rats. Arterial baroreceptor reflex sensitivity (BRS) for control of heart rate (HR) in response to increases in mean arterial pressure (MAP) was tested before and after bilateral microinjection of the angiotensin type 1 (AT(1)) receptor blocker candesartan or the ANG-(1-7) receptor blocker (d-Ala(7))-ANG-(1-7) into the NTS of urethane-chloralose-anesthetized ASrAOGEN and SD rats. Baseline MAP was higher in ASrAOGEN than in SD rats under anesthesia (P < 0.01). Injection of candesartan or (d-Ala(7))-ANG-(1-7) decreased MAP (P < 0.01) and HR (P < 0.05) in ASrAOGEN, but not SD, rats. The BRS at baseline was similar in ASrAOGEN and SD rats. Candesartan increased BRS by 41% in SD rats (P < 0.01) but was without effect in ASrAOGEN rats. In contrast, the reduction in BRS after (d-Ala(7))-ANG-(1-7) administration was comparable in SD (31%) and ASrAOGEN rats (34%). These findings indicate that the absence of glia-derived Aogen is associated with 1) an increase in MAP under anesthesia mediated via AT(1) and ANG-(1-7) receptors within the NTS, 2) the absence of an endogenous ANG II contribution to tonic inhibition of BRS, and 3) a continued contribution of endogenous ANG-(1-7) to tonic enhancement of BRS.


Subject(s)
Angiotensinogen/genetics , Angiotensinogen/physiology , Baroreflex/physiology , Heart Rate/physiology , Neuroglia/physiology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Animals, Genetically Modified , Baroreflex/drug effects , Benzimidazoles/pharmacology , Biphenyl Compounds , Blood Pressure , Brain/drug effects , Brain/physiology , Male , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Solitary Nucleus/physiology , Tetrazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...