Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Cancer ; 4(4): zcac042, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36568963

ABSTRACT

The discovery of synthetic lethality as a result of the combined loss of PARP1 and BRCA has revolutionized the treatment of DNA repair-deficient cancers. With the development of PARP inhibitors, patients displaying germline or somatic mutations in BRCA1 or BRCA2 were presented with a novel therapeutic strategy. However, a large subset of patients do not respond to PARP inhibitors. Furthermore, many of those who do respond eventually acquire resistance. As such, combating de novo and acquired resistance to PARP inhibitors remains an obstacle in achieving durable responses in patients. In this review, we touch on some of the key mechanisms of PARP inhibitor resistance, including restoration of homologous recombination, replication fork stabilization and suppression of single-stranded DNA gap accumulation, as well as address novel approaches for overcoming PARP inhibitor resistance.

2.
Oncotarget ; 13: 1078-1091, 2022.
Article in English | MEDLINE | ID: mdl-36187556

ABSTRACT

PARP10 is a mono-ADP-ribosyltransferase with multiple cellular functions, including proliferation, apoptosis, metabolism and DNA repair. PARP10 is overexpressed in a significant proportion of tumors, particularly breast and ovarian cancers. Identifying genetic susceptibilities based on PARP10 expression levels is thus potentially relevant for finding new targets for precision oncology. Here, we performed a series of CRISPR genome-wide loss-of-function screens in isogenic control and PARP10-overexpressing or PARP10-knockout cell lines, to identify genetic determinants of PARP10-mediated cellular survival. We found that PARP10-overexpressing cells rely on multiple DNA repair genes for survival, including ATM, the master regulator of the DNA damage checkpoint. Moreover, we show that PARP10 impacts the recruitment of ATM to nascent DNA upon replication stress. Finally, we identify the CDK2-Cyclin E1 complex as essential for proliferation of PARP10-knockout cells. Our work identifies a network of functionally relevant PARP10 synthetic interactions, and reveals a set of factors which can potentially be targeted in personalized cancer therapy.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerases , ADP Ribose Transferases/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , DNA , Humans , Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Precision Medicine , Proto-Oncogene Proteins/genetics
3.
Oncogenesis ; 11(1): 33, 2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35717336

ABSTRACT

Maintenance of replication fork stability is essential for genome preservation. Stalled replication forks can be reversed by translocases such as SMARCAL1, and unless protected through the activity of the BRCA pathway, are subsequently subjected to nucleolytic degradation. The ATM and ATR kinases are master regulators of the DNA damage response. ATM activation upon DNA damage is mediated by the acetyltransferase TIP60. Here, we show that the TIP60-ATM pathway promotes replication fork reversal by recruiting SMARCAL1 to stalled forks. This enables fork degradation in BRCA-deficient cells. We also show that this ATM activity is not shared by ATR. Moreover, we performed a series of genome-wide CRISPR knockout genetic screens to identify genetic determinants of the cellular sensitivity to ATM inhibition in wildtype and BRCA2-knockout cells, and validated the top hits from multiple screens. We provide a valuable list of common genes which regulate the response to multiple ATM inhibitors. Importantly, we identify a differential response of wildtype and BRCA2-deficient cells to these inhibitors. In BRCA2-knockout cells, DNA repair genes (including RAD17, MDC1, and USP28) were essential for survival upon ATM inhibitor treatment, which was not the case in wild-type cells. These findings may eventually help guide the way for rational deployment of ATM inhibitors in the clinic.

4.
Nucleic Acids Res ; 49(22): 12855-12869, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34871431

ABSTRACT

Understanding chemoresistance mechanisms in BRCA-deficient cells will allow for identification of biomarkers for predicting tumor response to therapy, as well as the design of novel therapeutic approaches targeting this chemoresistance. Here, we show that the protein MED12, a component of the Mediator transcription regulation complex, plays an unexpected role in regulating chemosensitivity in BRCA-deficient cells. We found that loss of MED12 confers resistance to cisplatin and PARP inhibitors in both BRCA1- and BRCA2-deficient cells, which is associated with restoration of both homologous recombination and replication fork stability. Surprisingly, MED12-controlled chemosensitivity does not involve a function of the Mediator complex, but instead reflects a distinct role of MED12 in suppression of the TGFß pathway. Importantly, we show that ectopic activation of the TGFß pathway is enough to overcome the fork protection and DNA repair defects of BRCA-mutant cells, resulting in chemoresistance. Our work identifies the MED12-TGFß module as an important regulator of genomic stability and chemosensitivity in BRCA-deficient cells.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Replication/genetics , Drug Resistance, Neoplasm/genetics , Mediator Complex/genetics , Transforming Growth Factor beta/genetics , Antineoplastic Agents/pharmacology , BRCA1 Protein/deficiency , BRCA1 Protein/metabolism , BRCA2 Protein/deficiency , BRCA2 Protein/metabolism , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cisplatin/pharmacology , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Repair , HeLa Cells , Humans , Mediator Complex/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , RNA Interference , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism
5.
Elife ; 92020 12 01.
Article in English | MEDLINE | ID: mdl-33258450

ABSTRACT

A key challenge in antibiotic stewardship is figuring out how to use antibiotics therapeutically without promoting the evolution of antibiotic resistance. Here, we demonstrate proof of concept for an adjunctive therapy that allows intravenous antibiotic treatment without driving the evolution and onward transmission of resistance. We repurposed the FDA-approved bile acid sequestrant cholestyramine, which we show binds the antibiotic daptomycin, as an 'anti-antibiotic' to disable systemically-administered daptomycin reaching the gut. We hypothesized that adjunctive cholestyramine could enable therapeutic daptomycin treatment in the bloodstream, while preventing transmissible resistance emergence in opportunistic pathogens colonizing the gastrointestinal tract. We tested this idea in a mouse model of Enterococcus faecium gastrointestinal tract colonization. In mice treated with daptomycin, adjunctive cholestyramine therapy reduced the fecal shedding of daptomycin-resistant E. faecium by up to 80-fold. These results provide proof of concept for an approach that could reduce the spread of antibiotic resistance for important hospital pathogens.


Antibiotics are essential for treating infections. But their use can inadvertently lead to the emergence of antibiotic-resistant bacteria that do not respond to antibiotic drugs, making infections with these bacteria difficult or impossible to treat. Finding ways to prevent antibiotic resistance is critical to preserving the effectiveness of antibiotics. Many bacteria that cause infections in hospitals live in the intestines, where they are harmless. But these bacteria can cause life-threatening infections when they get into the bloodstream. When patients with bloodstream infections receive antibiotics, the bacteria in their intestines are also exposed to the drugs. This can kill off all antibiotic-susceptible bacteria, leaving behind only bacteria that have mutations that allow them to survive the drugs. These drug-resistant bacteria can then spread to other patients causing hard-to-treat infections. To stop this cycle of antibiotic treatment and antibiotic resistance, Morley et al. tested whether giving a drug called cholestyramine with intravenous antibiotics could protect the gut bacteria. In the experiments, mice were treated systemically with an antibiotic called daptomycin, which caused the growth of daptomycin-resistant strains of bacteria in the mice's intestines. In the laboratory, Morley et al. discovered that cholestyramine can inactivate daptomycin. Giving the mice cholestyramine and daptomycin together prevented the growth of antibiotic-resistant bacteria in the mice's intestines. Moreover, cholestyramine is taken orally and is not absorbed into the blood. It therefore only inactivates the antibiotic in the gut, but not in the blood. The experiments provide preliminary evidence that giving cholestyramine with antibiotics might help prevent the spread of drug resistance. Cholestyramine is already used to lower cholesterol levels in people. More studies are needed to determine if cholestyramine can protect gut bacteria and prevent antibiotic resistance in people.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cholestyramine Resin/therapeutic use , Daptomycin/antagonists & inhibitors , Daptomycin/therapeutic use , Drug Resistance, Bacterial , Enterococcus faecium/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Chemotherapy, Adjuvant , Cholestyramine Resin/pharmacology , Daptomycin/pharmacology , Drug Interactions , Female , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/prevention & control , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/prevention & control , Mice , Mice, Inbred C57BL
6.
PLoS Genet ; 16(11): e1009176, 2020 11.
Article in English | MEDLINE | ID: mdl-33137164

ABSTRACT

The ataxia telangiectasia and Rad3-related (ATR) protein kinase is a key regulator of the cellular response to DNA damage. Due to increased amount of replication stress, cancer cells heavily rely on ATR to complete DNA replication and cell cycle progression. Thus, ATR inhibition is an emerging target in cancer therapy, with multiple ATR inhibitors currently undergoing clinical trials. Here, we describe dual genome-wide CRISPR knockout and CRISPR activation screens employed to comprehensively identify genes that regulate the cellular resistance to ATR inhibitors. Specifically, we investigated two different ATR inhibitors, namely VE822 and AZD6738, in both HeLa and MCF10A cells. We identified and validated multiple genes that alter the resistance to ATR inhibitors. Importantly, we show that the mechanisms of resistance employed by these genes are varied, and include restoring DNA replication fork progression, and prevention of ATR inhibitor-induced apoptosis. In particular, we describe a role for MED12-mediated inhibition of the TGFß signaling pathway in regulating replication fork stability and cellular survival upon ATR inhibition. Our dual genome-wide screen findings pave the way for personalized medicine by identifying potential biomarkers for ATR inhibitor resistance.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Biomarkers, Tumor/metabolism , CRISPR-Cas Systems/genetics , DNA Replication/drug effects , DNA Replication/genetics , Drug Screening Assays, Antitumor , Gene Knockdown Techniques , HeLa Cells , Humans , Indoles , Mediator Complex/genetics , Mediator Complex/metabolism , Morpholines , Neoplasms/genetics , Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Signal Transduction/drug effects , Signal Transduction/genetics , Sulfonamides , Sulfoxides/pharmacology , Sulfoxides/therapeutic use , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...