Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(19): eadd1595, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728398

ABSTRACT

Large-scale, explosive volcanic eruptions are one of the Earth's most hazardous natural phenomena. We demonstrate that their size, frequency, and composition can be explained by processes in long-lived, high-crystallinity source reservoirs that control the episodic creation of large volumes of eruptible silicic magma and its delivery to the subvolcanic chamber where it is stored before eruption. Melt percolates upward through the reservoir and accumulates a large volume of low-crystallinity silicic magma which remains trapped until buoyancy causes magma-driven fractures to propagate into the overlying crust, allowing rapid magma transfer from the reservoir into the chamber. Ongoing melt percolation in the reservoir accumulates a new magma layer and the process repeats. Our results suggest that buoyancy, rather than crystallinity, is the key control on magma delivery from the source reservoir. They identify an optimum reservoir size for the largest silicic eruptions that is consistent with data from natural systems and explain why larger magnitude eruptions are not observed on Earth.

2.
Curr Biol ; 33(22): 4798-4806.e3, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37827150

ABSTRACT

Organ function emerges from the interactions between their constituent cells. The investigation of cellular organization can provide insight into organ function following structure-function relationships. Here, we investigate the extent to which properties in cellular organization can arise "for free" as an emergent property of embedding cells in space versus those that are actively generated by patterning processes. Default cellular configurations were established using three-dimensional (3D) digital tissue models. Network-based analysis of these synthetic cellular assemblies established a quantitative topological baseline of cellular organization, granted by virtue of passive spatial packing and the minimal amount of order that emerges for free in tessellated tissues. A 3D cellular-resolution digital tissue atlas for the model plant species Arabidopsis was generated, and the extent to which the organs in this organism conform to the default configurations was established through statistical comparisons with digital tissue models. Cells in different tissues of Arabidopsis do not conform to random packing arrangements to varying degrees. Most closely matching the random models was the undifferentiated shoot apical meristem (SAM) from which aerial organs emanate. By contrast, leaf and sepal tissue showed the greatest deviation from this baseline, suggesting these to be the most "complex" tissues in Arabidopsis. Investigation of the patterning principles responsible for the gap between these tissues and default patterns revealed cell elongation and the introduction of air spaces to contribute toward additional organ patterning complexity. This work establishes a quantitative morphospace to understand the principles of organ construction and its diversity within a single organism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Meristem/metabolism , Arabidopsis Proteins/metabolism , Morphogenesis , Plant Leaves/metabolism , Gene Expression Regulation, Plant
3.
Adv Colloid Interface Sci ; 320: 102962, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696199

ABSTRACT

Despite the broad range of interest and applications, controls on the surface charge of crude oil in aqueous solution remain poorly understood. The primary data source to understand the surface charge on crude oil comprises measurements of zeta potential on individual drops or emulsions obtained using the electrophoretic method (EPM). Here we (i) collate and review previous measurements of zeta potential on crude oil, (ii) compare and contrast the results, and (iii) report new measurements of zeta potential on crude oil wetting films and layers relevant to oil-saturated porous media, obtained using the streaming potential method (SPM). Results show that the zeta potential depends on electrolyte pH and the concentration of divalent ions Ca2+ and Mg2+. Lower pH and higher concentration of these divalent ions yields more positive zeta potential. The isoelectric point (IEP) in simple NaCl electrolytes lies in the pH range 3-5. The IEP in simple CaCl2 and MgCl2 electrolytes can be expressed as pCa or pMg, respectively, and lies in the range 0-1. Close to the IEP, the zeta potential varies linearly with pH, pCa or pMg, suggesting simple Nernstian behaviour of the crude oil surface. The sensitivity of the zeta potential to pH, pCa and pMg decreases with increasing total ionic strength. The impact of pH, pCa and pMg on zeta potential varies significantly across different crude oils and differs from non-polar hydrocarbons. The potential for other multivalent ions to modify crude oil zeta potential has not been tested. Data for crude oil wetting films and layers, obtained using the SPM and strongly oil-wet porous substrates in which the solid surfaces are coated with the crude oil of interest, are comparable to those obtained using emulsions and the EPM, suggesting that the controls on zeta potential on crude oil are the same irrespective of whether the oil forms droplets or wetting layers. The literature data reviewed here, along with new measured data, provide important insight into the effect of pH, and the concentration of divalent ions, on the zeta potential of crude oil in aqueous solution. They demonstrate relationships between ion concentration and zeta potential that are observed irrespective of crude oil composition. They also show that the crude oil composition plays a role, yet no consistent trends are observed between zeta potential and commonly measured bulk oil properties, possibly because bulk properties do not reflect the concentrations of interfacially active species in crude oil that may impact the development of surface charge. Moreover, data are extremely scarce for complex, high ionic strength electrolytes or at elevated temperature. The data reviewed and reported here have broad relevance to many engineering and industrial activities involving crude oil.

4.
J Colloid Interface Sci ; 608(Pt 1): 605-621, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34628321

ABSTRACT

HYPOTHESIS & MOTIVATION: Experimental data suggest a relationship between the macroscopic zeta potential measured on intact rock samples and the sample wettability. However, there is no pore-scale model to quantify this relationship. METHODS: We consider the simplest representation of a rock pore space: a bundle of capillary tubes of varying size. Equations describing mass and charge transfer through a single capillary are derived and the macroscopic zeta potential and wettability determined by integrating over capillaries. Model predictions are tested against measured data yielding a good match. FINDINGS: Mixed- and oil-wet models return a macro-scale zeta potential that is a combination of the micro-scale zeta potential of mineral-brine and oil-brine interfaces and the relationship between macro-scale zeta potential and water saturation exhibits hysteresis. The model predicts a similar relationship between zeta potential and wettability to that observed in experimental data but does not provide a perfect match. Fitting the model to experimental data allows the oil-brine zeta potential to be estimated at conditions where it cannot be measured directly. Results suggest that positive values of the oil-brine zeta potential may be more common than previously thought with implications for surface complexation models and the design of controlled salinity waterflooding of oil reservoirs.


Subject(s)
Water , Porosity , Wettability
5.
Plant Methods ; 15: 33, 2019.
Article in English | MEDLINE | ID: mdl-30988692

ABSTRACT

Modern imaging approaches enable the acquisition of 3D and 4D datasets capturing plant organ development at cellular resolution. Computational analyses of these data enable the digitization and analysis of individual cells. In order to fully harness the information encoded within these datasets, annotation of the cell types within organs may be performed. This enables data points to be placed within the context of their position and identity, and for equivalent cell types to be compared between samples. The shoot apical meristem (SAM) in plants is the apical stem cell niche from which all above ground organs are derived. We developed 3DCellAtlas Meristem which enables the complete cellular annotation of all cells within the SAM with up to 96% accuracy across all cell types in Arabidopsis and 99% accuracy in tomato SAMs. Successive layers of cells are identified along with the central stem cells, boundary regions, and layers within developing primordia. Geometric analyses provide insight into the morphogenetic process that occurs during these developmental processes. Coupling these digital analyses with reporter expression will enable multidimensional analyses to be performed at single cell resolution. This provides a rapid and robust means to perform comprehensive cellular annotation of plant SAMs and digital single cell analyses, including cell geometry and gene expression. This fills a key gap in our ability to analyse and understand complex multicellular biology in the apical plant stem cell niche and paves the way for digital cellular atlases and analyses.

6.
Cell Syst ; 8(1): 53-65.e3, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30660611

ABSTRACT

The control of cell position and division act in concert to dictate multicellular organization in tissues and organs. How these processes shape global order and molecular movement across organs is an outstanding problem in biology. Using live 3D imaging and computational analyses, we extracted networks capturing cellular connectivity dynamics across the Arabidopsis shoot apical meristem (SAM) and topologically analyzed the local and global properties of cellular architecture. Locally generated cell division rules lead to the emergence of global tissue-scale organization of the SAM, facilitating robust global communication. Cells that lie upon more shorter paths have an increased propensity to divide, with division plane placement acting to limit the number of shortest paths their daughter cells lie upon. Cell shape heterogeneity and global cellular organization requires KATANIN, providing a multiscale link between cell geometry, mechanical cell-cell interactions, and global tissue order.


Subject(s)
Arabidopsis/chemistry , Meristem/chemistry , Plant Shoots/chemistry , Cell Division
7.
J R Soc Interface ; 14(135)2017 10.
Article in English | MEDLINE | ID: mdl-29021161

ABSTRACT

Multicellularity and cellular cooperation confer novel functions on organs following a structure-function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure-function relationships that can guide future organ design.


Subject(s)
Models, Biological , Animals , Humans
8.
PeerJ ; 5: e2956, 2017.
Article in English | MEDLINE | ID: mdl-28168118

ABSTRACT

Ocean warming represents a major threat to marine biota worldwide, and forecasting ecological ramifications is a high priority as atmospheric carbon dioxide (CO2) emissions continue to rise. Fitness of marine species relies critically on early developmental and reproductive stages, but their sensitivity to environmental stressors may be a bottleneck in future warming oceans. The present study focuses on the tropical sea hare, Stylocheilus striatus (Gastropoda: Opisthobranchia), a common species found throughout the Indo-West Pacific and Atlantic Oceans. Its ecological importance is well-established, particularly as a specialist grazer of the toxic cyanobacterium, Lyngbya majuscula. Although many aspects of its biology and ecology are well-known, description of its early developmental stages is lacking. First, a detailed account of this species' life history is described, including reproductive behavior, egg mass characteristics and embryonic development phases. Key developmental features are then compared between embryos developed in present-day (ambient) and predicted end-of-century elevated ocean temperatures (+3 °C). Results showed developmental stages of embryos reared at ambient temperature were typical of other opisthobranch species, with hatching of planktotrophic veligers occurring 4.5 days post-oviposition. However, development times significantly decreased under elevated temperature, with key embryonic features such as the velum, statocysts, operculum, eyespots and protoconch developing approximately 24 h earlier when compared to ambient temperature. Although veligers hatched one day earlier under elevated temperature, their shell size decreased by approximately 20%. Our findings highlight how an elevated thermal environment accelerates planktotrophic development of this important benthic invertebrate, possibly at the cost of reducing fitness and increasing mortality.

9.
Adv Colloid Interface Sci ; 240: 60-76, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28063520

ABSTRACT

Despite the broad range of interest and applications, controls on calcite surface charge in aqueous solution, especially at conditions relevant to natural systems, remain poorly understood. The primary data source to understand calcite surface charge comprises measurements of zeta potential. Here we collate and review previous measurements of zeta potential on natural and artificial calcite and carbonate as a resource for future studies, compare and contrast the results of these studies to determine key controls on zeta potential and where uncertainties remain, and report new measurements of zeta potential relevant to natural subsurface systems. The results show that the potential determining ions (PDIs) for the carbonate mineral surface are the lattice ions Ca2+, Mg2+ and CO32-. The zeta potential is controlled by the concentration-dependent adsorption of these ions within the Stern layer, primarily at the Outer Helmholtz Plane (OHP). Given this, the Iso-Electric Point (IEP) at which the zeta potential is zero should be expressed as pCa (or pMg). It should not be reported as pH, similar to most metal oxides. The pH does not directly control the zeta potential. Varying the pH whilst holding pCa constant yields constant zeta potential. The pH affects the zeta potential only by moderating the equilibrium pCa for a given CO2 partial pressure (pCO2). Experimental studies that appear to yield a systematic relationship between pH and zeta potential are most likely observing the relationship between pCa and zeta potential, with pCa responding to the change in pH. New data presented here show a consistent linear relationship between equilibrium pH and equilibrium pCa or pMg irrespective of sample used or solution ionic strength. The surface charge of calcite is weakly dependent on pH, through protonation and deprotonation reactions that occur within a hydrolysis layer immediately adjacent to the mineral surface. The Point of Zero Charge (PZC) at which the surface charge is zero could be expressed as pH, but surface complexation models suggest the surface is negatively charged over the pH range 5.5-11. Several studies have suggested that SO42- is also a PDI for the calcite surface, but new data presented here indicate that the value of pSO4 may affect zeta potential only by moderating the equilibrium pCa. Natural carbonate typically yields a more negative zeta potential than synthetic calcite, most likely due to the presence of impurities including clays, organic matter, apatite, anhydrite or quartz, that yield a more negative zeta potential than pure calcite. New data presented here show that apparently identical natural carbonates display differing zeta potential behaviour, most likely due to the presence of small volumes of these impurities. It is important to ensure equilibrium, defined in terms of the concentration of PDIs, has been reached prior to taking measurements. Inconsistent values of zeta potential obtained in some studies may reflect a lack of equilibration. The data collated and reported here have broad application in engineering processes including the manufacture of paper and cement, the geologic storage of nuclear waste and CO2, and the production of oil and gas.

10.
Plant Physiol ; 173(1): 907-917, 2017 01.
Article in English | MEDLINE | ID: mdl-27872245

ABSTRACT

Gibberellic acid (GA)-mediated cell expansion initiates the seed-to-seedling transition in plants and is repressed by DELLA proteins. Using digital single-cell analysis, we identified a cellular subdomain within the midhypocotyl, whose expansion drives the final step of this developmental transition under optimal conditions. Using network inference, the transcription factor ATHB5 was identified as a genetic factor whose localized expression promotes GA-mediated expansion specifically within these cells. Both this protein and its putative growth-promoting target EXPANSIN3 are repressed by DELLA, and coregulated at single-cell resolution during seed germination. The cellular domains of hormone sensitivity were explored within the Arabidopsis (Arabidopsis thaliana) embryo by putting seeds under GA-limiting conditions and quantifying cellular growth responses. The middle and upper hypocotyl have a greater requirement for GA to promote cell expansion than the lower embryo axis. Under these conditions, germination was still completed following enhanced growth within the radicle and lower axis. Under GA-limiting conditions, the athb5 mutant did not show a phenotype at the level of seed germination, but it did at a cellular level with reduced cell expansion in the hypocotyl relative to the wild type. These data reveal that the spatiotemporal cell expansion events driving this transition are not determinate, and the conditional use of GA-ATHB5-mediated hypocotyl growth under optimal conditions may be used to optionally support rapid seedling growth. This study demonstrates that multiple genetic and spatiotemporal cell expansion mechanisms underlie the seed to seedling transition in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Gibberellins/metabolism , Homeodomain Proteins/metabolism , Hypocotyl/cytology , Transcription Factors/metabolism , Anisotropy , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Germination/genetics , Homeodomain Proteins/genetics , Hypocotyl/growth & development , Plants, Genetically Modified , Seedlings/growth & development , Seeds/cytology , Seeds/physiology , Single-Cell Analysis/methods , Transcription Factors/genetics
11.
Sci Rep ; 6: 37363, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27876833

ABSTRACT

Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...