Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 32(2): 101264, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38827249

ABSTRACT

Quasi-perfusion culture was employed to intensify lentiviral vector (LV) manufacturing using a continuous stable producer cell line in an 8-day process. Initial studies aimed to identify a scalable seeding density, with 3, 4, and 5 × 104 cells cm-2 providing similar specific productivities of infectious LV. Seeding at 3 × 104 cells cm-2 was selected, and the quasi-perfusion was modulated to minimize inhibitory metabolite accumulation and vector exposure at 37°C. Similar specific productivities of infectious LV and physical LV were achieved at 1, 2, and 3 vessel volumes per day (VVD), with 1 VVD selected to minimize downstream processing volumes. The optimized process was scaled 50-fold to 1,264 cm2 flasks, achieving similar LV titers. However, scaling up beyond this to a 6,320 cm2 multilayer flask reduced titers, possibly from suboptimal gas exchange. Across three independent processes in 25 cm2 to 6,320 cm2 flasks, reproducibility was high with a coefficient of variation of 7.7% ± 2.9% and 11.9% ± 3.0% for infectious and physical LV titers, respectively. The optimized flask process was successfully transferred to the iCELLis Nano (Cytiva) fixed-bed bioreactor, with quasi-perfusion at 1 VVD yielding 1.62 × 108 TU.

2.
Mol Ther Methods Clin Dev ; 32(1): 101209, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38435128

ABSTRACT

Continuous manufacturing of lentiviral vectors (LVs) using stable producer cell lines could extend production periods, improve batch-to-batch reproducibility, and eliminate costly plasmid DNA and transfection reagents. A continuous process was established by expanding cells constitutively expressing third-generation LVs in the iCELLis Nano fixed-bed bioreactor. Fixed-bed bioreactors provide scalable expansion of adherent cells and enable a straightforward transition from traditional surface-based culture vessels. At 0.5 vessel volume per day (VVD), the short half-life of LVs resulted in a low total infectious titer at 1.36 × 104 TU cm-2. Higher perfusion rates increased titers, peaking at 7.87 × 104 TU cm-2 at 1.5 VVD. The supernatant at 0.5 VVD had a physical-to-infectious particle ratio of 659, whereas this was 166 ± 15 at 1, 1.5, and 2 VVD. Reducing the pH from 7.20 to 6.85 at 1.5 VVD improved the total infectious yield to 9.10 × 104 TU cm-2. Three independent runs at 1.5 VVD and a culture pH of 6.85 showed low batch-to-batch variability, with a coefficient of variation of 6.4% and 10.0% for total infectious and physical LV yield, respectively. This study demonstrated the manufacture of high-quality LV supernatant using a stable producer cell line that does not require induction.

3.
Membranes (Basel) ; 11(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34832134

ABSTRACT

Two high resolution, 3D imaging techniques were applied to visualize and characterize sterilizing grade dual-layer filtration of liposomes, enabling membrane structure to be related with function and performance. Two polyethersulfone membranes with nominal retention ratings of 650 nm and 200 nm were used to filter liposomes of an average diameter of 143 nm and a polydispersity index of 0.1. Operating conditions including differential pressure were evaluated. X-ray computed tomography at a pixel size of 63 nm was capable of resolving the internal geometry of each membrane. The respective asymmetry and symmetry of the upstream and downstream membranes could be measured, with pore network modeling used to identify pore sizes as a function of distance through the imaged volume. Reconstructed 3D digital datasets were the basis of tortuous flow simulation through each porous structure. Confocal microscopy visualized liposome retention within each membrane using fluorescent dyes, with bacterial challenges also performed. It was found that increasing pressure drop from 0.07 MPa to 0.21 MPa resulted in differing fluorescent retention profiles in the upstream membrane. These results highlighted the capability for complementary imaging approaches to deepen understanding of liposome sterilizing grade filtration.

4.
PDA J Pharm Sci Technol ; 75(2): 128-140, 2021.
Article in English | MEDLINE | ID: mdl-32999077

ABSTRACT

Liposomes are increasingly being investigated and implemented as injectable drug delivery systems. The preferred method for sterilizing injectable drug formulations using liposomes is to use filtration. However, because of the size of liposomes and their physicochemical properties, this can be challenging with sterilizing-grade filters rated at 0.2 µm. Filter validation studies with injectable liposomes have shown a higher likelihood of premature filter blockage and bacterial penetration compared to other parenteral drug types. Consequently, a greater understanding of the sterilizing filtration of liposomes is required so that appropriate decisions are made concerning the selection and validation of sterilizing-grade filters for these applications. In this work, Lipoid S100 liposomes were produced using a microfluidization technique without any encapsulated drug (empty) to investigate their filtration through a polyethersulfone filter. In order to improve the sterilizing-grade filtration of liposomes, optimization of both the filtration process and the formulation characteristics is important. To show this, the effect of the different filtration conditions/parameters (prefiltration, serial filtration, differential pressure, inlet pressure) and liposome characteristics such as size and size distribution on filtration were examined. For example, by decreasing the size of the liposome from 179.0 to 127.3 nm, the volumetric throughput (L/m2) was increased by more than 40-fold. Or by increasing the differential pressure, the volumetric throughput was improved significantly by more than 18-fold (0.7 to 4.1 bar) and in another experiment by more than 10-fold (0.3 to 2.1 bar). In addition, the benefit of using higher differential pressure on the liposome transmission through various sterilizing-grade membranes was shown.


Subject(s)
Filtration , Liposomes , Bacteria , Sterilization
5.
Biotechnol Prog ; 30(4): 856-63, 2014.
Article in English | MEDLINE | ID: mdl-24616397

ABSTRACT

Several recent studies have reported a decline in virus retention during virus challenge filtration experiments, although the mechanism(s) governing this phenomenon for different filters remains uncertain. Experiments were performed to evaluate the retention of PP7 and PR772 bacteriophage through Ultipor VF Grade DV20 virus filters during constant pressure filtration. While the larger PR772 phage was fully retained under all conditions, a 2-log decline in retention of the small PP7 phage was observed at high throughputs, even under conditions where there was no decline in filtrate flux. In addition, prefouling the membrane with an immunoglobulin G solution had no effect on phage retention. An internal polarization model was developed to describe the decline in phage retention arising from the accumulation of phage in the upper (reservoir) layer within the filter which increases the challenge to the lower (rejection) layer. Independent support for this internal polarization phenomenon was provided by confocal microscopy of fluorescently labeled phage within the membrane. The model was in good agreement with phage retention data over a wide range of phage titers, confirming that virus retention is throughput dependent and supporting current recommendations for virus retention validation studies. These results provide important insights into the factors governing virus retention by membrane filters and their dependence on the underlying structure of the virus filter membrane.


Subject(s)
Antibodies/chemistry , Bacteriophages/isolation & purification , Ultrafiltration , Viruses/isolation & purification , Antibodies/immunology , Bacteriophages/chemistry , Membranes, Artificial , Models, Biological , Solutions/chemistry , Viruses/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...