Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Genet ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951642

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis and limited treatment options. Efforts to identify effective treatments are thwarted by limited understanding of IPF pathogenesis and poor translatability of available preclinical models. Here we generated spatially resolved transcriptome maps of human IPF (n = 4) and bleomycin-induced mouse pulmonary fibrosis (n = 6) to address these limitations. We uncovered distinct fibrotic niches in the IPF lung, characterized by aberrant alveolar epithelial cells in a microenvironment dominated by transforming growth factor beta signaling alongside predicted regulators, such as TP53 and APOE. We also identified a clear divergence between the arrested alveolar regeneration in the IPF fibrotic niches and the active tissue repair in the acutely fibrotic mouse lung. Our study offers in-depth insights into the IPF transcriptional landscape and proposes alveolar regeneration as a promising therapeutic strategy for IPF.

2.
PLoS One ; 18(7): e0287183, 2023.
Article in English | MEDLINE | ID: mdl-37406028

ABSTRACT

Airway diseases can disrupt tight junction proteins, compromising the epithelial barrier and making it more permeable to pathogens. In people with pulmonary disease who are prone to infection with Pseudomonas aeruginosa, pro-inflammatory leukotrienes are increased and anti-inflammatory lipoxins are decreased. Upregulation of lipoxins is effective in counteracting inflammation and infection. However, whether combining a lipoxin receptor agonist with a specific leukotriene A4 hydrolase (LTA4H) inhibitor could enhance these protective effects has not to our knowledge been investigated. Therefore, we explored the effect of lipoxin receptor agonist BML-111 and JNJ26993135 a specific LTA4H inhibitor that prevents the production of pro-inflammatory LTB4 on tight junction proteins disrupted by P. aeruginosa filtrate (PAF) in human airway epithelial cell lines H441 and 16HBE-14o. Pre-treatment with BML-111 prevented an increase in epithelial permeability induced by PAF and conserved ZO-1 and claudin-1 at the cell junctions. JNJ26993135 similarly prevented the increased permeability induced by PAF, restored ZO-1 and E-cadherin and reduced IL-8 but not IL-6. Cells pre-treated with BML-111 plus JNJ26993135 restored TEER and permeability, ZO-1 and claudin-1 to the cell junctions. Taken together, these data indicate that the combination of a lipoxin receptor agonist with a LTA4H inhibitor could provide a more potent therapy.


Subject(s)
Lipoxins , Tight Junctions , Humans , Tight Junctions/metabolism , Pseudomonas aeruginosa/metabolism , Claudin-1/metabolism , Epithelial Cells/metabolism , Tight Junction Proteins/metabolism
3.
Skin Health Dis ; 3(3): e209, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37275428

ABSTRACT

Background: Janus Kinase (JAK) inhibition has recently demonstrated therapeutic efficacy in both restoring hair growth and resolving inflammation in Alopecia Areata (AA). These effects are dose dependent and mainly efficacious at ranges close to a questionable risk profile. Objectives: We explored the possibility to separate the beneficial and adverse effects of JAK inhibition by selectively inhibiting JAK1 and thereby avoiding side effects associated with JAK2 blockade. Methods: The C3H/HeJ mouse model of AA was used to demonstrate therapeutic efficacy in vivo with different regimens of a selection of JAK inhibitors in regards to systemic versus local drug exposure. Human peripheral blood lymphocytes were stimulated in vitro to demonstrate translation to the human situation. Results: We demonstrate that selective inhibition of JAK1 produces fast resolution of inflammation and complete restoration of hair growth in the C3H/HeJ mouse model of AA. Furthermore, we show that topical treatment does not restore hair growth and that treatment needs to be extended well beyond that of restored hair growth in order to reach treatment-free remission. For translatability to human disease, we show that cytokines involved in AA pathogenesis are similarly inhibited by selective JAK1 and pan-JAK inhibition in stimulated human peripheral lymphocytes and specifically in CD8+ T cells. Conclusion: This study demonstrates that systemic exposure is required for efficacy in AA and we propose that a selective JAK1 inhibitor will offer a treatment option with a superior safety profile to pan-JAK inhibitors for these patients.

4.
IEEE J Biomed Health Inform ; 25(2): 371-380, 2021 02.
Article in English | MEDLINE | ID: mdl-32750907

ABSTRACT

With the increasing amount of image data collected from biomedical experiments there is an urgent need for smarter and more effective analysis methods. Many scientific questions require analysis of image sub-regions related to some specific biology. Finding such regions of interest (ROIs) at low resolution and limiting the data subjected to final quantification at full resolution can reduce computational requirements and save time. In this paper we propose a three-step pipeline: First, bounding boxes for ROIs are located at low resolution. Next, ROIs are subjected to semantic segmentation into sub-regions at mid-resolution. We also estimate the confidence of the segmented sub-regions. Finally, quantitative measurements are extracted at full resolution. We use deep learning for the first two steps in the pipeline and conformal prediction for confidence assessment. We show that limiting final quantitative analysis to sub-regions with full confidence reduces noise and increases separability of observed biological effects.


Subject(s)
Deep Learning , Humans , Image Processing, Computer-Assisted , Semantics
5.
Ann Rheum Dis ; 78(10): 1363-1370, 2019 10.
Article in English | MEDLINE | ID: mdl-31300459

ABSTRACT

OBJECTIVES: Genetic variations in TNFAIP3 (A20) de-ubiquitinase (DUB) domain increase the risk of systemic lupus erythematosus (SLE) and rheumatoid arthritis. A20 is a negative regulator of NF-κB but the role of its DUB domain and related genetic variants remain unclear. We aimed to study the functional effects of A20 DUB-domain alterations in immune cells and understand its link to SLE pathogenesis. METHODS: CRISPR/Cas9 was used to generate human U937 monocytes with A20 DUB-inactivating C103A knock-in (KI) mutation. Whole genome RNA-sequencing was used to identify differentially expressed genes between WT and C103A KI cells. Functional studies were performed in A20 C103A U937 cells and in immune cells from A20 C103A mice and genotyped healthy individuals with A20 DUB polymorphism rs2230926. Neutrophil extracellular trap (NET) formation was addressed ex vivo in neutrophils from A20 C103A mice and SLE-patients with rs2230926. RESULTS: Genetic disruption of A20 DUB domain in human and murine myeloid cells did not give rise to enhanced NF-κB signalling. Instead, cells with C103A mutation or rs2230926 polymorphism presented an upregulated expression of PADI4, an enzyme regulating protein citrullination and NET formation, two key mechanisms in autoimmune pathology. A20 C103A cells exhibited enhanced protein citrullination and extracellular trap formation, which could be suppressed by selective PAD4 inhibition. Moreover, SLE-patients with rs2230926 showed increased NETs and increased frequency of autoantibodies to citrullinated epitopes. CONCLUSIONS: We propose that genetic alterations disrupting the A20 DUB domain mediate increased susceptibility to SLE through the upregulation of PADI4 with resultant protein citrullination and extracellular trap formation.


Subject(s)
Citrullination/genetics , Endopeptidases/genetics , Extracellular Traps/genetics , Lupus Erythematosus, Systemic/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Animals , Autoantibodies/blood , Autoantibodies/immunology , Epitopes/immunology , Genetic Predisposition to Disease/genetics , Humans , Lupus Erythematosus, Systemic/blood , Mice , NF-kappa B/metabolism , Neutrophils/metabolism , Polymorphism, Genetic , Protein-Arginine Deiminase Type 4/metabolism , Up-Regulation/genetics
6.
JCI Insight ; 3(17)2018 09 06.
Article in English | MEDLINE | ID: mdl-30185674

ABSTRACT

The respiratory tract is normally kept essentially free of bacteria by cilia-mediated mucus transport, but in chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), bacteria and mucus accumulates instead. To address the mechanisms behind the mucus accumulation, the proteome of bronchoalveolar lavages from COPD patients and mucus collected in an elastase-induced mouse model of COPD was analyzed, revealing similarities with each other and with the protein content in colonic mucus. Moreover, stratified laminated sheets of mucus were observed in airways from patients with CF and COPD and in elastase-exposed mice. On the other hand, the mucus accumulation in the elastase model was reduced in Muc5b-KO mice. While mucus plugs were removed from airways by washing with hypertonic saline in the elastase model, mucus remained adherent to epithelial cells. Bacteria were trapped on this mucus, whereas, in non-elastase-treated mice, bacteria were found on the epithelial cells. We propose that the adherence of mucus to epithelial cells observed in CF, COPD, and the elastase-induced mouse model of COPD separates bacteria from the surface cells and, thus, protects the respiratory epithelium.


Subject(s)
Bacteria , Epithelial Cells/metabolism , Mucus/microbiology , Mucus/physiology , Pulmonary Disease, Chronic Obstructive/complications , Animals , Bronchoalveolar Lavage Fluid , Cystic Fibrosis/complications , Disease Models, Animal , Epithelial Cells/microbiology , Epithelial Cells/pathology , Female , Humans , Lung , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucin-5B/genetics , Pancreatic Elastase , Pseudomonas aeruginosa , Respiratory Mucosa
7.
Pharmacol Ther ; 179: 102-110, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28546083

ABSTRACT

This review aims to address the mechanisms of compromised immune tolerance contributing to the development and maintenance of Alopecia Areata (AA). Our goal is to also highlight future treatment opportunities and therapeutics that will safely and efficiently restore hair growth and maintain patients in remission. AA is a presumptive autoimmune disorder that coincides and genetically clusters to several other autoimmune diseases. In this review, we pay attention to the learnings from the mechanistic research and drug development in these other autoimmune conditions. Interestingly, most of these diseases have been linked to compromised central and peripheral tolerance, and increased intestinal inflammation with enhanced gut permeability. Break of tolerance and priming of the autoreactive T-cells to attack antigenic epitopes in the hair follicle most likely requires several steps which include escape from negative selection and compromised peripheral tolerance. Local skin-related changes are also of importance due to the patchy manifestation of the skin areas with loss of hair, particularly in the early disease. Here, we discuss the defective mechanisms of tolerance, both central and peripheral, and hypothesize that the disease is driven by areas of tolerance break, and that these could be targeted for successful therapeutic interventions.


Subject(s)
Alopecia Areata/immunology , Immune Tolerance , Alopecia Areata/microbiology , Animals , Autoimmunity , Gastrointestinal Microbiome/immunology , Helminthiasis/immunology , Humans
8.
PLoS One ; 11(3): e0151211, 2016.
Article in English | MEDLINE | ID: mdl-26977928

ABSTRACT

PURPOSE: A magnetic resonance imaging method is presented that allows for the simultaneous assessment of oxygen delivery, oxygen uptake, and parenchymal density. The technique is applied to a mouse model of porcine pancreatic elastase (PPE) induced lung emphysema in order to investigate how structural changes affect lung function. METHOD: Nine-week-old female C57BL6 mice were instilled with saline or PPE at days 0 and 7. At day 19, oxygen delivery, oxygen uptake, and lung density were quantified from T1 and proton-density measurements obtained via oxygen-enhanced magnetic resonance imaging (OE-MRI) using an ultrashort echo-time imaging sequence. Subsequently, the lungs were sectioned for histological observation. Blood-gas analyses and pulmonary functional tests via FlexiVent were performed in separate cohorts. PRINCIPAL FINDINGS: PPE-challenged mice had reduced density when assessed via MRI, consistent with the parenchyma loss observed in the histology sections, and an increased lung compliance was detected via FlexiVent. The oxygenation levels, as assessed via the blood-gas analysis, showed no difference between PPE-challenged animals and control. This finding was mirrored in the global MRI assessments of oxygen delivery and uptake, where the changes in relaxation time indices were matched between the groups. The heterogeneity of the same parameters however, were increased in PPE-challenged animals. When the oxygenation status was investigated in regions of varying density, a reduced oxygen-uptake was found in low-density regions of PPE-challenged mice. In high-density regions the uptake was higher than that of regions of corresponding density in control animals. The oxygen delivery was proportional to the oxygen uptake in both groups. CONCLUSIONS: The proposed method allowed for the regional assessment of the relationship between lung density and two aspects of lung function, the oxygen delivery and uptake. When compared to global indices of lung function, an increased sensitivity for detecting heterogeneous lung disorders was found. This indicated that the technique has potential for early detection of lung dysfunction-before global changes occur.


Subject(s)
Lung/pathology , Magnetic Resonance Imaging/methods , Pulmonary Emphysema/pathology , Animals , Disease Models, Animal , Female , Lung/physiopathology , Mice , Mice, Inbred C57BL , Oxygen , Pancreatic Elastase , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/physiopathology , Respiratory Function Tests
9.
Arthritis Rheumatol ; 66(7): 1789-99, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24574272

ABSTRACT

OBJECTIVE: To investigate the role of hypoxia in the pathology of osteoarthritic (OA) bone by exploring its effect on the phenotype of isolated primary osteoblasts from patients with knee OA. METHODS: OA bone samples were collected at the time of elective joint replacement surgery for knee or hip OA. Normal bone samples were collected postmortem from cadaver donors. Primary osteoblasts were isolated from knee OA bone chips and cultured under normoxic or hypoxic (2% O2 ) conditions. Alkaline phosphatase activity was quantified using an enzymatic assay, and osteopontin and prostaglandin E2 (PGE2 ) production was assayed by enzyme-linked immunosorbent assay. Total RNA was extracted from bone and osteoblasts, and gene expression was profiled by quantitative reverse transcription-polymerase chain reaction. RESULTS: Human OA bone tissue sections stained positively for carbonic anhydrase IX, a biomarker of hypoxia, and exhibited differential expression of genes that mediate the vasculature and blood coagulation as compared to those found in normal bone. Culture of primary osteoblasts isolated from knee OA bone under hypoxic conditions profoundly affected the osteoblast phenotype, including the expression of genes that mediate bone matrix, bone remodeling, and bone vasculature. Hypoxia also increased the expression of cyclooxygenase 2 and the production of PGE2 by OA osteoblasts. Osteoblast expression of type II collagen α1 chain, angiopoietin-like 4, and insulin-like growth factor binding protein 1 was shown to be mediated by hypoxia-inducible factor 1α. Chronic hypoxia reduced osteoblast- mineralized bone nodule formation. CONCLUSION: These findings demonstrate that hypoxia can induce pathologic changes in osteoblast functionality consistent with an OA phenotype, providing evidence that hypoxia is a key driver of OA pathology.


Subject(s)
Bone Remodeling/physiology , Calcification, Physiologic/physiology , Hypoxia , Osteoarthritis, Knee , Osteoblasts/physiology , Alkaline Phosphatase/metabolism , Biomarkers/metabolism , Blood Coagulation/genetics , Cadaver , Dinoprostone/metabolism , Female , Humans , Hypoxia/genetics , Hypoxia/pathology , Hypoxia/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Neovascularization, Physiologic/genetics , Osteoarthritis, Hip/genetics , Osteoarthritis, Hip/pathology , Osteoarthritis, Hip/physiopathology , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/physiopathology , Osteoblasts/cytology , Phenotype , Primary Cell Culture , Transcriptome
10.
Chest ; 145(5): 1016-1024, 2014 May.
Article in English | MEDLINE | ID: mdl-24337162

ABSTRACT

BACKGROUND: The Short Physical Performance Battery (SPPB) is commonly used in gerontology, but its determinants have not been previously evaluated in COPD. In particular, it is unknown whether pulmonary aspects of COPD would limit the value of SPPB as an assessment tool of lower limb function. METHODS: In 109 patients with COPD, we measured SPPB score, spirometry, 6-min walk distance, quadriceps strength, rectus femoris cross-sectional area, fat-free mass, physical activity, health status, and Medical Research Council dyspnea score. In a subset of 31 patients with COPD, a vastus lateralis biopsy was performed, and the biopsy specimen was examined to evaluate the structural muscle characteristics associated with SPPB score. The phenotypic characteristics of patients stratified according to SPPB were determined. RESULTS: Quadriceps strength and 6-min walk distance were the only independent predictors of SPPB score in a multivariate regression model. Furthermore, while age, dyspnea, and health status were also univariate predictors of SPPB score, FEV 1 was not. Stratification by reduced SPPB score identified patients with locomotor muscle atrophy and increasing impairment in strength, exercise capacity, and daily physical activity. Patients with mild or major impairment defined as an SPPB score < 10 had a higher proportion of type 2 fibers (71% [14] vs 58% [15], P = .04). CONCLUSIONS: The SPPB is a valid and simple assessment tool that may detect a phenotype with functional impairment, loss of muscle mass, and structural muscle abnormality in stable patients with COPD.


Subject(s)
Activities of Daily Living , Health Status , Motor Activity/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Aged , Exercise Test , Female , Follow-Up Studies , Humans , Male , Middle Aged , Phenotype , Prognosis , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Severity of Illness Index , Spirometry , Walking
11.
Arthritis Res Ther ; 11(1): R11, 2009.
Article in English | MEDLINE | ID: mdl-19171047

ABSTRACT

INTRODUCTION: Although the presence of bone marrow lesions (BMLs) on magnetic resonance images is strongly associated with osteoarthritis progression and pain, the underlying pathology is not well established. The aim of the present study was to evaluate the architecture of subchondral bone in regions with and without BMLs from the same individual using bone histomorphometry. METHODS: Postmenopausal female subjects (n = 6, age 48 to 90 years) with predominantly medial compartment osteoarthritis and on a waiting list for total knee replacement were recruited. To identify the location of the BMLs, subjects had a magnetic resonance imaging scan performed on their study knee prior to total knee replacement using a GE 1.5 T scanner with a dedicated extremity coil. An axial map of the tibial plateau was made, delineating the precise location of the BML. After surgical removal of the tibial plateau, the BML was localized using the axial map from the magnetic resonance image and the lesion excised along with a comparably sized bone specimen adjacent to the BML and from the contralateral compartment without a BML. Cores were imaged via microcomputed tomography, and the bone volume fraction and tissue mineral density were calculated for each core. In addition, the thickness of the subchondral plate was measured, and the following quantitative metrics of trabecular structure were calculated for the subchondral trabecular bone in each core: trabecular number, thickness, and spacing, structure model index, connectivity density, and degree of anisotropy. We computed the mean and standard deviation for each parameter, and the unaffected bone from the medial tibial plateau and the bone from the lateral tibial plateau were compared with the affected BML region in the medial tibial plateau. RESULTS: Cores from the lesion area displayed increased bone volume fraction but reduced tissue mineral density. The samples from the subchondral trabecular lesion area exhibited increased trabecular thickness and were also markedly more plate-like than the bone in the other three locations, as evidenced by the lower value of the structural model index. Other differences in structure that were noted were increased trabecular spacing and a trend towards decreased trabecular number in the cores from the medial location as compared with the contralateral location. CONCLUSIONS: Our preliminary data localize specific changes in bone mineralization, remodeling and defects within BMLs features that are adjacent to the subchondral plate. These BMLs appear to be sclerotic compared with unaffected regions from the same individual based on the increased bone volume fraction and increased trabecular thickness. The mineral density in these lesions, however, is reduced and may render this area to be mechanically compromised, and thus susceptible to attrition.


Subject(s)
Bone Marrow Diseases/pathology , Bone and Bones/pathology , Calcification, Physiologic , Osteoarthritis, Knee/pathology , Aged , Aged, 80 and over , Bone Density , Female , Humans , Middle Aged , Postmenopause , Sclerosis
12.
J Immunol Methods ; 322(1-2): 137-42, 2007 Apr 30.
Article in English | MEDLINE | ID: mdl-17362980

ABSTRACT

This paper describes the evaluation and optimisation of boric acid antigen retrieval (AR) in rat joint tissue immunohistochemistry (IHC), with reference to two sample IHC targets, CD31 (PECAM-1) and Proliferating Cell Nuclear Antigen (PCNA). Sections of buffered formalin-fixed arthritic tibial/talus joints, decalcified with EDTA, EDTA/formalin or Surgipath(R) Decalcifier I(R), were subjected to one of a number of pre-treatments (none, 0.1% trypsin, 0.2 M acetic acid pH 7.0 or 0.2 M boric acid pH 7.0) and then immunostained for CD31 or PCNA. Of the pre-treatment AR regimens, boric acid gave the most consistent and specific immunostaining of both antigens in joints from the three different decalcification protocols. Satisfactory CD31 and PCNA staining was also achieved in EDTA decalcified joints with no pre-treatment. Likewise, PCNA could be demonstrated in Surgipath(R) decalcified tissue without pre-treatment, albeit at slightly lower staining intensity than achieved following boric acid. The remaining decalcification/pre-treatment conditions were unsatisfactory for IHC of the two antigens investigated because of lack of staining, non-specific staining or consistent loss of sections from the slides. Boric acid pre-treatment provides a valuable alternative low temperature AR method where conventional heat-mediated AR methods are normally required but cannot be used due to tissue type.


Subject(s)
Antigens/analysis , Boric Acids/chemistry , Immunohistochemistry/methods , Joints/chemistry , Staining and Labeling/methods , Animals , Decalcification Technique , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Proliferating Cell Nuclear Antigen/analysis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...