Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 26(10): 1385-97, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-16953224

ABSTRACT

Constitutively activated nuclear factor-kappaB (NF-kappaB) has been associated with a variety of aggressive tumor types, including head and neck squamous cell carcinoma (HNSCC); however, the mechanism of its activation is not fully understood. Therefore, we investigated the molecular pathway that mediates constitutive activation of NF-kappaB in a series of HNSCC cell lines. We confirmed that NF-kappaB was constitutively active in all HNSCC cell lines (FaDu, LICR-LON-HN5 and SCC4) examined as indicated by DNA binding, immunocytochemical localization of p65, by NF-kappaB-dependent reporter gene expression and its inhibition by dominant-negative (DN)-inhibitory subunit of NF-kappaB (IkappaBalpha), the natural inhibitor of NF-kappaB. Constitutive NF-kappaB activation in HNSCC was found to be due to constitutive activation of IkappaBalpha kinase (IKK); and this correlated with constitutive expression of phosphorylated forms of IkappaBalpha and p65 proteins. All HNSCC showed the expression of p50, p52, p100 and receptor-interacting protein; all linked with NF-kappaB activation. The expression of constitutively active NF-kappaB in HNSCC is mediated through the tumor necrosis factor (TNF) signaling pathway, as NF-kappaB reporter activity was inhibited by DN-TNF receptor-associated death domain (TRADD), DN-TNF receptor-associated factor (TRAF)2, DN-receptor-interacting protein (RIP), DN-transforming growth factor-beta-activated kinase 1 (TAK1), DN-kappa-Ras, DN-AKT and DN-IKK but not by DN-TRAF5 or DN-TRAF6. Constitutive NF-kappaB activation was also associated with the autocrine expression of TNF, TNF receptors and receptor-activator of NF-kappaB and its ligand in HNSCC cells but not interleukin (IL)-1beta. All HNSCC cell lines expressed IL-6, a NF-kappaB-regulated gene product. Furthermore, treatment of HNSCC cells with anti-TNF antibody downregulated constitutively active NF-kappaB, and this was associated with inhibition of IL-6 expression and cell proliferation. Our results clearly demonstrate that constitutive activation of NF-kappaB is mediated through the TRADD-TRAF2-RIP-TAK1-IKK pathway, making TNF a novel target in the treatment of head and neck cancer.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Head and Neck Neoplasms/metabolism , NF-kappa B/biosynthesis , Cell Line, Tumor , Cell Proliferation , Humans , I-kappa B Kinase/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , TNF Receptor-Associated Death Domain Protein/metabolism , TNF Receptor-Associated Factor 2/metabolism , Transcription Factor RelA , Transforming Growth Factors/metabolism
2.
Article in English | MEDLINE | ID: mdl-16331857

ABSTRACT

Tumor necrosis factor (TNF), initially discovered as a result of its antitumor activity, has now been shown to mediate tumor initiation, promotion, and metastasis. In addition, dysregulation of TNF has been implicated in a wide variety of inflammatory diseases including rheumatoid arthritis, Crohn's disease, multiple sclerosis, psoriasis, scleroderma, atopic dermatitis, systemic lupus erythematosus, type II diabetes, atherosclerosis, myocardial infarction, osteoporosis, and autoimmune deficiency disease. TNF, however, is a critical component of effective immune surveillance and is required for proper proliferation and function of NK cells, T cells, B cells, macrophages, and dendritic cells. TNF activity can be blocked, either by using antibodies (Remicade and Humira) or soluble TNF receptor (Enbrel), for the symptoms of arthritis and Crohn's disease to be alleviated, but at the same time, such treatment increases the risk of infections, certain type of cancers, and cardiotoxicity. Thus blockers of TNF that are safe and yet efficacious are urgently needed. Some evidence suggests that while the transmembrane form of TNF has beneficial effects, soluble TNF mediates toxicity. In most cells, TNF mediates its effects through activation of caspases, NF-kappaB, AP-1, c-jun N-terminal kinase, p38 MAPK, and p44/p42 MAPK. Agents that can differentially regulate TNF expression or TNF signaling can be pharmacologically safe and effective therapeutics. Our laboratory has identified numerous such agents from natural sources. These are discussed further in detail.


Subject(s)
Inflammation/metabolism , Signal Transduction/physiology , Tumor Necrosis Factor-alpha , Animals , Enzyme Activation , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Skin Diseases/metabolism , Transcription Factor AP-1/antagonists & inhibitors , Transcription Factor AP-1/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...