Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 79(3): 518-533, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30573518

ABSTRACT

Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) by either promoter methylation or by HIF1α is associated with increased metastasis and poor prognosis in multiple cancers. We have previously shown that in normoxic conditions, ASS1 downregulation facilitates cancer cell proliferation by increasing aspartate availability for pyrimidine synthesis by the enzyme complex CAD. Here we report that in hypoxia, ASS1 expression in cancerous cells is downregulated further by HIF1α-mediated induction of miR-224-5p, making the cells more invasive and dependent on upstream substrates of ASS1 for survival. ASS1 was downregulated under acidic conditions, and ASS1-depleted cancer cells maintained a higher intracellular pH (pHi), depended less on extracellular glutamine, and displayed higher glutathione levels. Depletion of substrates of urea cycle enzymes in ASS1-deficient cancers decreased cancer cell survival. Thus, ASS1 levels in cancer are differentially regulated in various environmental conditions to metabolically benefit cancer progression. Understanding these alterations may help uncover specific context-dependent cancer vulnerabilities that may be targeted for therapeutic purposes. SIGNIFICANCE: Cancer cells in an acidic or hypoxic environment downregulate the expression of the urea cycle enzyme ASS1, which provides them with a redox and pH advantage, resulting in better survival.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/3/518/F1.large.jpg.


Subject(s)
Argininosuccinate Synthase/metabolism , Neoplasms/metabolism , Adolescent , Adult , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Hypoxia/physiology , Cell Line, Tumor , Cell Movement/physiology , Child , Down-Regulation , Gene Expression Profiling , Glutamine/metabolism , Humans , Hydrogen-Ion Concentration , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, SCID , Neoplasms/enzymology , Neoplasms/pathology , Osteosarcoma/metabolism , Osteosarcoma/pathology , Oxidation-Reduction , Young Adult
2.
Nat Immunol ; 16(7): 737-45, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006015

ABSTRACT

Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire(+) mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.


Subject(s)
Central Tolerance/immunology , Sirtuin 1/immunology , Transcription Factors/immunology , Transcriptional Activation/immunology , Acetylation , Animals , Antigens/immunology , Central Tolerance/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Flow Cytometry , HEK293 Cells , Humans , Immunoblotting , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Organ Specificity/immunology , Protein Binding/immunology , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/immunology , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...