Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Biol ; 38(3): e14240, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38407527

ABSTRACT

Conserving mountains is important for protecting biodiversity because they have high beta diversity and endemicity, facilitate species movement, and provide numerous ecosystem benefits for people. Mountains are often thought to have lower levels of human modification and contain more protected area than surrounding lowlands. To examine this, we compared biogeographic attributes of the largest, contiguous, mountainous region on each continent. In each region, we generated detailed ecosystems based on Köppen-Geiger climate regions, ecoregions, and detailed landforms. We quantified anthropogenic fragmentation of these ecosystems based on human modification classes of large wild areas, shared lands, and cities and farms. Human modification for half the mountainous regions approached the global average, and fragmentation reduced the ecological integrity of mountain ecosystems up to 40%. Only one-third of the major mountainous regions currently meet the Kunming-Montreal Global Biodiversity Framework target of 30% coverage for all protected areas; furthermore, the vast majority of ecosystem types present in mountains were underrepresented in protected areas. By measuring ecological integrity and human-caused fragmentation with a detailed representation of mountain ecosystems, our approach facilitates tracking progress toward achieving conservation goals and better informs mountain conservation.


Evaluación de la protección y fragmentación ambiental de las principales regiones montañosas del mundo Resumen La conservación de las montañas es importante para proteger a la biodiversidad pues tienen una alta diversidad beta y endemismos, facilitan el movimiento y proporcionan numerosos beneficios ambientales para las personas. Con frecuencia creemos que las montañas tienen niveles más bajos de modificaciones humanas y que contienen más áreas protegidas que las tierras bajas que las rodean. Para evaluar lo anterior, hicimos una comparación entre los atributos biogeográficos de la región montañosa más grande y contigua en cada continente. En cada región generamos ecosistemas detallados con base en las regiones climáticas de Köppen­Geiger, ecorregiones y relieves detallados. Cuantificamos la fragmentación antropogénica de estos ecosistemas con base en las clases de modificación humana de las grandes áreas silvestres, tierras compartidas y ciudades y granjas. Las modificaciones humanas en la mitad de las regiones montañosas se aproximaron al promedio mundial, mientras que la fragmentación redujo la integridad ecológica de los ecosistemas montañosas hasta un 40%. Sólo un tercio de las principales regiones montañosas cumplen actualmente con el objetivo de 30% de cobertura para todas las áreas protegidas del Marco Mundial de Biodiversidad de Kunming­Montreal; además, la gran mayoría de los tipos de ecosistemas presentes en las montañas estaban subrepresentados dentro de las áreas protegidas. Con la medida de la integridad ecológica y la fragmentación antropogénica mediante una representación detallada de los ecosistemas montañosos, nuestra estrategia facilita el seguimiento del progreso hacia la obtención de los objetivos de conservación e informa de mejor manera a la conservación de las montañas.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Altitude
2.
Ecol Evol ; 10(23): 13488-13499, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304554

ABSTRACT

Participatory approaches, such as community photography, can engage the public in questions of societal and scientific interest while helping advance understanding of ecological patterns and processes. We combined data extracted from community-sourced, spatially explicit photographs with research findings from 2018 fieldwork in the Yukon, Canada, to evaluate winter coat molt patterns and phenology in mountain goats (Oreamnos americanus), a cold-adapted, alpine mammal. Leveraging the community science portals iNaturalist and CitSci, in less than a year we amassed a database of almost seven hundred unique photographs spanning some 4,500 km between latitudes 37.6°N and 61.1°N from 0 to 4,333 m elevation. Using statistical methods accounting for incomplete data, a common issue in community science datasets, we identified the effects of intrinsic (sex and presence of offspring) and broad environmental (latitude and elevation) factors on molt onset and rate and compared our findings with published data. Shedding occurred over a 3-month period between 29 May and 6 September. Effects of sex and offspring on the timing of molt were consistent between the community-sourced and our Yukon data and with findings on wild mountain goats at a long-term research site in west-central Alberta, Canada. Males molted first, followed by females without offspring (4.4 days later in the coarse-grained, geographically wide community science sample; 29.2 days later in our fine-grained Yukon sample) and lastly females with new kids (6.2; 21.2 days later, respectively). Shedding was later at higher elevations and faster at northern latitudes. Our findings establish a basis for employing community photography to examine broad-scale questions about the timing of ecological events, as well as sex differences in response to possible climate drivers. In addition, community photography can help inspire public participation in environmental and outdoor activities specifically with reference to iconic wildlife.

3.
PeerJ ; 4: e1595, 2016.
Article in English | MEDLINE | ID: mdl-26870607

ABSTRACT

Globally, mature forests appear to be increasing in biomass density (BD). There is disagreement whether these increases are the result of increases in atmospheric CO2 concentrations or a legacy effect of previous land-use. Recently, it was suggested that a threshold of 450 years should be used to define mature forests and that many forests increasing in BD may be younger than this. However, the study making these suggestions failed to account for the interactions between forest age and climate. Here we revisit the issue to identify: (1) how climate and forest age control global forest BD and (2) whether we can set a threshold age for mature forests. Using data from previously published studies we modelled the impacts of forest age and climate on BD using linear mixed effects models. We examined the potential biases in the dataset by comparing how representative it was of global mature forests in terms of its distribution, the climate space it occupied, and the ages of the forests used. BD increased with forest age, mean annual temperature and annual precipitation. Importantly, the effect of forest age increased with increasing temperature, but the effect of precipitation decreased with increasing temperatures. The dataset was biased towards northern hemisphere forests in relatively dry, cold climates. The dataset was also clearly biased towards forests <250 years of age. Our analysis suggests that there is not a single threshold age for forest maturity. Since climate interacts with forest age to determine BD, a threshold age at which they reach equilibrium can only be determined locally. We caution against using BD as the only determinant of forest maturity since this ignores forest biodiversity and tree size structure which may take longer to recover. Future research should address the utility and cost-effectiveness of different methods for determining whether forests should be classified as mature.

SELECTION OF CITATIONS
SEARCH DETAIL
...